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Transient Ball Motion and Skid in

The generalized differential equations of motion of the ball in an angular contact ball
bearing operating under elastohydrodynamic traction conditions are formulated and in-
tegrated with prescribed initial conditions. A complete transient and steady state motion
is thus obtained to predict the amount of skid and resulting wear rates for a set of given
operating conditions. The analysis provides an up-to-date design tool in predicting skid
and ball motion as a whole in ball bearings operating under arbitrary ball-race traction
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characteristics.
Introduction

With increasing numbers of high speed ball bearing applica-
tions, the interest in analyzing the true dynamic behavior of the
bearing elements has been continuously growing. Most of the ki-
nematic treatments of ball bearings until recently have been lim-
ited to the hypotheses of inner or outer race control postulated by
Jones [12,13] and, thus, the ball angular velocity vector is clearly
defined and a quasi-static force balance type of calculation is car-
ried out to estimate the bearing behavior. Based on such simpli-
fied hypotheses, Poplawski and Mauriello [15] have presented a
simple analysis for predicting skidding in angular contact ball
bearings.

Harris [7] has recently proposed that race control is generally
valid for high speed bearings when the traction coefficient at the
ball race contacts is high enough to prevent any gyroscopic slip.
Also, in his later work [8] it has been pointed out that these sim-
ple kinematic hypotheses do not hold under elastohydrodynamic
conditions. With a very simple elastohydrodynamic traction
model, Harris [8] has modified the existing force balance type of
analysis to avoid the use of race control theories. The convergence
of the solution of the nonlinear equations is such that a modified
quasi-static analysis will strongly depend on the traction-slip
characteristics. Furthermore, in applications where the balls are
continuously accelerating and decelerating a force balance type of
computation may be quite meaningless.

A dynamic formulation of motion of the various bearing ele-
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ments has been presented by Walters [18]. This work is basically
concerned with the dynamics of the separator and a constrained
ball motion is assumed. Nevertheless, the resulting differential
equations of motion are integrated to obtain the true motion. The
constraints on the ball motion require that the contact angles and
loads as a function of the orbital position of the ball are predeter-
mined by a simple conventional quasi-static analysis where the
effects of centrifugal forces have been included. Thus, the contact
angles and loads are not influenced by any dynamics of the bear-
ing elements. Since the dynamic variations in applied loads and
the dynamic changes in race angular velocity, resulting in varia-
tions in centrifugal force, will result in dynamic variations in the
contact angles, it is clear that the constrained ball motion as-
sumption will not hold under such dynamic conditions. Hence, the
formulation cannot be used for investigating skid and other tran-
sient phenomenon in ball bearings. Furthermore, in a lubricated
bearing validity of a constrained motion, established by quasi-
static methods of Jones [12, 13], where no gyroscopic slip is al-
lowed, is still questionable and a generalized solution of the ball
motion in a six degree of freedom system is necessary in order to
provide any support to such a holonomic system.

Significant advancements have been made in understanding
the lubrication mechanics at ball race contacts. The classical
Dawson Higginson’s Theory [4] for computing lubricant film
thickness in cylinderical elastohydrodynamic (EHD) contacts has
been modified by Cheng [2, 3] to include the thermal effects and
side leakage in elliptical contacts. A substantial experimental
work has also been reported in this area as compiled by McGrew
et al. [14]. Based on the available formulation for elastohydrodyn-
amic theory Smith et al. [16] have correlated experimental trac-
tion-slip data with a semi-empirical lubrication model for poly-
phenyl ether. Similar work with 7808 MIL oil has also been re-
ported [17]. On the basis of experimental data obtained by John-
son and Cameron [11], Gu [6] has presented a lubrication model
relevant to most mineral oils and it is shown that the model
agrees extremely well with the experimental observations of
Allen, et al. [1].
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The primary objective of this paper is to formulate the general-
ized differential equations of motion for a ball in a thrust loaded
angular contact bearing. The motion is considered with the six
degrees of freedom and it is shown that these equations may be
integrated with arbitrary traction-slip relation and any set of
initial conditions. Two different EHD ball-race traction models
available in the literature [6, 16] are used in the formulation.
Transient ball motion under such realistic traction models is
studied when the inner race is accelerated and hence a dynamic
simulation of skid in a lubricated bearing is obtained. The differ-
ential equations are properly nondimensionalized and a conven-
tional Fourth Order Runga-Kutta-Merson method [5] is used to
numerically integrate the system and check the truncation errors
of each time step to ensure convergence. Also, steady state solu-
tions under the different ball-race traction models compared with
those obtained by the conventional force balance type of methods
due to Jones [12, 13].

Equations of Ball Motion

The complete motion of the ball is obtained by considering the
translational and orbital motion of the center of the mass in the
cylindrical inertial coordinate frame (x, r, n) and the rotational
motion of the ball about its mass center in the ball frame (&, 3, 2)
as shown in Fig. 1. Generally the (%, 5, £) system is fixed in the
body along the principal inertial axes, but if the balls are perfect-
ly spherical any orthogonal system is equally convenient to de-
scribe the motion. Hence, %, #, 2 is selected such that the 2 axis
lies along the radius vector r and the % axis is parallel to the iner-
tial axis x. Denoting the mass of the ball by m and the moment
of inertia by I, the equations of motion are described as:

mx =F,
m#F —m?) =k (1)
m(rh + 21n) = F,

Lo = Gs

Io; — Iwzn = Gy (2)

I(:l); + Iwg,'l.] = G;

where Fy, F,, F, denote the components of the applied force vec-
tor, F. Gy, G, G: represent the components of applied moment
vector G and the ball angular velocity is denoted by the compo-
nents wx, wy, wz. Also, the first derivatives are denoted by a dot
(“.”) over the variable and the second derivative is represented
by two dots. The orbital velocity of the ball is clearly 7.

z BALL FRAME
N

——
y//

INERTIAL FRAME

Fig. 1 Ball coordinate frames

1t should be noted that the contact forces at ball race contact,
and resulting tractive forces (with a prescribed traction-slip rela-
tion) form the applied force and moment vectors F and G.

Applied Force and Moment Vectors

The vectors F and G in equations (1) and (2) denoting the ap-
plied forces and moments are to be determined at any position of
the ball relative to the races. The races will be allowed to acceler-
ate only about their axes and the relative position will be deter-
mined by satisfying the static equilibrium. Therefore, let the po-
sition of the inner race and the balls be specified relative to the
outer race. In order to determine the total forces and moments on
the ball, the elastic contact forces and the resulting tractive forc-
es, which will generally be a function of local slip velocity, are to
be determined. Thus, solution of race equilibrium equations and
the kinematics of the ball will be required at any prescribed posi-
tion of the ball relative to the outer race. When only a thrust load
is applied axially, the position of the inner race is determined by
satisfying the equilibrium equation along the bearing axis.

1 Race Equilibrium. Let the position of a ball be denoted by
(x, r) in the inertial frame (x, r, 1) as shown in Fig. 2. The origin
of the inertial frame is selected so that the centers of curvature of
outer race lie on a circle which has the center at the origin, lies in
a plane normal to the x axis and has a radius, r1. Also, let r. de-
note the radius of the pitch circle, which is defined such that if r
= r,, the contact force is zero. Thus, under no load conditions

(fy - 0.5)d cos &' =r, -7, (3)

———Nomenclature
a = length of semimajor axis of con- I = ball moment of inertia (Ib-in- B = viscosity-temperature coefficient

tact ellipse (in) sec?) (°R)

. . .. . K = wear coefficient 81 = viscosity-temperature coefficient
A=4d 1 emimajor axis -

imensioniess semimaj K; = thermal conductivity of lubri- (1/°R)
b = length of semiminor axis of con- cant (Ib/sec °F) = normal contact deflection

tact ellipse (in) m = mass of the ball (Ib-sec/in?) p = curvature of elastically deformed
B = dimensionless semiminor axis Q = ballrace contact load (Ib) surface (1/in)

B . . Q° = static ball-race contact load (Ib) « = traction coefficient
d = ball diameter (in) Q: = applied thrust load to = inlet viscosity (Ib-sec/in?)
D = dimensionless ball diameter R = dimensionless radial position 7 = dimensionless time
E = Young’s modulus of elasticity "So i cl:;aract.e ristic lengt‘h. (in) .
g = dimensionless position of inner

(Ib/in?) race
F = applied force vector, (Ib) ¢t = time (sec) Coordinate Frames
F* = dimensionless applied force vec- To = m'let temperature (DB) ("’f”’) - inertial frame

tor u = slip velocity vector (in/sec) (2,9,2) = ball frame

. . V = sliding velocity (in/sec) (x,y,2) = coordinate frame along the con-

G = applied moment vector (in-1b) W = wear rate (in#/sec) tact load
G* = dimensionless moment vector a = contact angle (£,5) = axesin the contact ellipse
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Fig. 2 Coordinate frames defining the relative positions ot ball and the
races

where d is the ball diameter, a? is the free contact angle, and f; is
the outer race curvature factor.

Let the ball position and outer race curvature center be mea-
sured relative to its no load position and ro be a characteristic
length which scales all linear dimensions. Thus,

D=L R, = v/ Ri= r, — vy R = r — )/

¥y
X = x/r,

4)
The contact angle «; and the contact deflection 8; and load Q
are given by

X

VX2 4+ (R + Ry’

sin a4 =

5= — /X ¢ (R+ R) —(f—0.5)D (5)
0
0 — 4V2E'r? 6y \3/2
= 3V Epi* 61*

where E’, p1*, and 61 are described in the Appendix. Also the size
of the contact ellipse may be determined by the formulae summa-
rized in Appendix.

The axial position of the inner race will in general be deter-
mined by the dynamic equation of motion of the race. This clear-
ly will also involve the dynamics of the remainder of the system
of which the bearing is a part. In order to avoid such system
complications the present investigation is restricted to static
equilibrium of the inner race. Also, it may be noted that the com-
ponent of the ball race tractive force along the bearing axis will
generally be small compared to the absolute value to the tractive
force vector since the gyroscopic slip will be small compared to
the slip in the rolling direction. Furthermore, since the absolute
tractive force itself is small compared to the applied load it is jus-
tifiable to exclude the tractive force component from the static
equilibrium equation of the race in the axial direction.

Journal of Lubrication Technology

Similar to the outer race, let the inner race curvature centers
lie on the circle of radius r2 in a plane normal to the x axis and a
distance s from the origin as shown in Fig. 2. Also, define the
nondimensional quantities

(6)

Again under no load condition the contact angle is «° and the
inner race position is determined by geometry

cos al= - B2 R
= (f,-0.5)D

S =X+ Y{(f, - 0.5)D} + (R, — R)?

where f2 is the inner race curvature factor.
If the contact angle under load is a3, as shown in Fig. 2, the
normal contact deflection and load are given by

S=s5/ry; Ry= (ry —7v,)/ 7.

M

— 5 —
5,=2-R-B _(r _o5)p
7y COS Oy
and
_ 4V2E'Y) (Ez_)s/z
3V Ipy* 0y*
Denoting the applied thrust load by Q.,, the static equilibrium
equation along the bearing axis is written as

@ysinay,+ @, =0

@y

9)

@2 may be eliminated from equations (8) and (9) and the result-
ing nonlinear equation in ag is solved by Newton-Raphson itera-
tion method. Once a3 is known, the computation of contact load
Q2 is straight forward from equation (8). The axial position of the
inner race, S, is determined by geometry.

S =X+ (R, — R) tan o, (10)

2 Ball-Race Slip and Tractive Forces. In order to determine

Fig. 3 Contact ellipse axes relative to ball reference frames
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the tractive forces at the ball-race contacts the local slip velocity
vector at any point must be determined for any point within the
contact ellipse.

Consider the coordinate frame (x, y, 2) as shown in Fig. 3. The
position vector of any point Pin this frame is given by

XA

= 0
/ot — (xA) - [p2 —A? + /241_142

where p is the radius of curvature of the deformed surface as is
given by

R, (11)

2/,D
Pi=7r+ 1

where f; is the race curvature factor for outer and inner races cor-
responding to{ = 1 and i = 2, respectively. Also X; = xz/a;, A; =
a,'/ro. Rp = r,,/ro.

If the ball angular velocity vector is & in the (%, §, 2) system,
the translational velocities are given by X, R, and the orbital
speed is 7 in the inertial frame, then the ball velocity at point P
in the (&, ¥, ) system is given by

X
v, = [1(0))é X R, + [T@]{n®R + Ry (12)
R
where the transformation matrix T (a) is given by
cosa 0 -sina
(r(a@)]=] o0 1 0
sin « 0 cos a

The race angular velocity w, will have only one component
along the x axis, but for brevity the vector notation will be pre-
served. Race velocity at point P in the (%, ¥, z) system is thus
given by

X
v, = [T(@)){w, x R, + [T(@)]{ O
R+ R,

(13)

The local slip velocity is obtained by subtracting (12) and (13).
(14)

If the length of semiminor axis, b is small compared to that of
the semimajor axis, a, then the slip variations along the minor
axis may be neglected. For most bearing geometries, the ratio a/b
isindeed large and, hence, such an approximation is relevant.

The tractive force in the contact ellipse will have two compo-
nents in a general case with gyroscopic slip along the £ axis and
tractive slip along the { direction (see Fig. 4). If a traction coeffi-
cient is defined as a vector x having components k1 and «2 along
the ¢ and { axes, then the tractive force vector is defined to have
the components

d}q = K1(u)dQ and sz = Kz(u)dQ (15)

where d@ is the normal contact load over any elementary area in
the contact ellipse. Since the variations of slip in the { direction
is neglected, an elementary area is defined as shown in Fig. 4.
Now dF,, dFz, and d@Q are quantities per unit length along the &
axis. Normal load is defined by the Hertzian pressure distribu-
tion, thus

u=v, -V,

where (16)

£ =E/a
Combining equations (15) and (16) the net force vector per unit
length along the £ axis and the resulting tractive moment are
given by
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Fig. 4 Contact ellipse

i _ Kz[u(g)] _
dF’ = Zpyab(l - §%) qralu(@))(
-1
dG =R, X d¥’ an

Since, in the equations of motion, the moments are required in
the (%, 9, 2) system and the force is to be transformed in the (x, n,
r) frame equation (17) must be properly transformed. Also by def-
inition of (%, §, 2) frame it is clear that the components along the
three orthogonal axes of both frames will be equal. Thus,

F = [T(a)]fidF'
p (18)
G= [T(oz)]fldG’

The integrals shown in equations (18) are obtained numerically
using the conventional Gaussian Quadrature methods when the
traction slip relation « [u (£)] is prescribed. This relationship is
generally derived from the lubrication model at the ball-race con-
tact.

3 Lubrication Models. A realistic lubrication model for the
ball-race contact is indeed a dominating factor in determining the
dynamic response of a bearing. With all the experimental data
available for various lubricants and several versions of the EHD
analyses, the two semi-empirical models presented in the litera-
ture may be used for establishing the tractionslip relationship
under EHD conditions. Just for comparison purposes a constant
traction coefficient is also considered as a possible model.

Model 1. Based on the theoretical foundation for elastohydro-
dynamic theory [2, 3, 4] and available experimental data [11], Gu
[6] has postulated a semiempirical model for predicting traction
as a function of slip. It is shown that the traction coefficient k2 in
the rolling direction is dependent on three parameters.

2

%:72; Gz=£‘§%t2—; Gy =vbu
where po is the lubricant viscosity (1b-sec/in?) at an inlet tem-
perature of To (°R). K is the thermal conductivity (1b/sec’F) of
the lubricant h is the film thickness (in), uz is the slip velocity
(in/sec) in the rolling direction, pu is the maximum Hertz pres-
sure and the coefficients v and 31 are obtained from the viscosity-
pressure-temperature model of the form

w(p,T) = g exp Ly, — B(T — Ty

Gy = (19)

(20)

The relationship between Gi, Ga, G5 and the traction coeffi-
cient «g is represented graphically [14] by a series of graphs and
this data is basically stored in a computer data file for real appli-
cations. The film thickness h is computed by the methods of
Dawson-Higginson [4] and Cheng [2, 3].

With the assumptions of a narrow contact ellipse this model is
directly applicable to a ball-race contact. In equation (19) px is

Transactions of the ASME
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Fig. 6 Ball motion solutions in dimensionless form

replaced by the pressure as a function of ¢

pe=py J1-)

and u; is clearly a function of ¢ as determined by equation (14).
Thus «2 is obtained as a function of £. In the case of gyroscopic
slip, there will be a slip component u,, which is a direction per-
pendicular to rolling. If this velocity is small compared with the
slip in the rolling direction, then it is shown that the traction
coefficient normal to the rolling direction is expressed as
Uy

y 21)

K1 = Kg
This model agreed extremely well with the experimental torque
data obtained by Allen, et al. [1]. The required lubricant data for
the present investigation is assumed to be same as that used in
references [1] and [6], v = 9.2 X 10-5 in?/lb, 8, = 0.028/deg F, K,
= 0.0216 lb/sec deg F, uo = 6 X 10-5 Ib-sec/in? and the inlet
temperature, 7o = 83 deg F. Note that the temperature-viscosity
coefficient, 8, in computations of thermal reduction factors due to
Cheng [2] is defined by the relation

Journal of Lubrication Technology

11
to = Mg exp [y, + B — E]

A value for this coefficient is extracted by comparing the above
relation with equation (20). 8 = 8301 °R found to be consistent.

Model II. Other than the above model, Smith et al. [16] have
proposed a traction model based on the experimental data ob-
tained by them for polyphenyl ether. It is shown that the shear
stress in the lubricant is best correlated by an expression

oty sin”! [y exp (y*p/2)] exp (y*p/2)

V1 + ¢* exp (y*P)

_ HoB*
lwb = Uy 8Kf
p is the local pressure obtained by Hertzian pressure distribution
and other parameters are the same as defined earlier. The three
empirical constants uo*, v*, 3* are determined by correlating the
experimental data.

Once again with the assumption of narrow ellipse equation (22)
may be integrated with respect to { to obtain a tractive force per
unit length along the major axis £. If this force is divided by the
normal force per unit length a traction coefficient 3 is the rolling
direction determined. Some straightforward algebraic manipula-
tion will show that

O¢e =

where (22)

4

KalE) = < ()
where
a0 = [ o@D no(E,0) + V1 + @*(E,0)] 4 (g3
V1+ @*E )
96,0 = b exp [W/1 - /2]
and

= g/bg

Traction coefficient in the ¢ direction, due to gyroscopic slip uy
is again estimated by the approximation used by Gu [6]
ky(E) = Kyl )L (24)

Uy

Since the model is shown to be valid for polyphenyl ether the
lubricant data used for the computation of film thickness and
thermal reduction factors is extracted from reference [16]. The re-
quired data are ug = 2.5639 X 10-6 Ib-sec/in2, v = 9.8623 x 10-%
inZ/lb, 8 = 6.5042 X 103 °R, Ty = 670 °R, K, = 0.01205 lb/sec deg
F. The empirical constants uo*, v*, and 8* are shown to be quite
insensitive to rolling velocity [16] and values estimated from the
data obtained at a rolling speed of 1820 in/sec are uo* = 1.01 X
10-3 Ib-sec/in2, y* = 3.77 X 10-5 in2/lb, and 8* = 0.046/deg F.
In the present investigation, these values are used and all three
parameters are assumed to be constant.

Model III. Primarily for the purpose of comparison, a con-
stant traction coefficient is considered as a possible lubrication
model. An absolute value of 0.007 is assumed for the traction
coefficient. Note that the components «; and 2 are now defined
as
Ik Uy

[

and 9 = (25)

where |«| = 0.007 is the absolute value of the traction coefficient.

Dimensional Organization

If the applied force and moment vectors as computed above are
substituted in equations (1) and (2), the dynamic formulation of
the differential equations of motion becomes complete. With
specified initial conditions, these equations may be integrated to
obtain the ball motion. Before any numerical integration proce-
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Table 1 Comparison of the steady state dynamic solutions with
the available quasi-static solution

Quasi-static

force bal-
ance compu- Traction Traction Traction
Parameter tation® model I  model IT model III
w7 57670 57410 57280 57950
Ball angular velocity (rpm) 0 51 53 121
w7 3591 3990 4123 580
Ball orbital velocity (rpm) 7255 7214 7200 7247
Spin-to-roll-ratio QOuter race 0 0.00833 0.0121 0.0823
Inner race 0.689 0.679 0.676 0.754
Contact angle (deg) Quter race 4.074 4.068 4.015 5.358
Inner race 37.70 37.68 37.68 37.51
Contact load (1b) Quter race 109.9 107.9 107.5 108.9
Inner race 17.21 17.22 17.22 17.29
@ Duye to Jones [12].
dure is employed, the equations must, however, be nondi- and
mensionalized so that the order of truncation error at each time 1 2
step may be tested and convergence of the solution is ensured. All dst = 10 2 Gy*P*A *B*
linear dimensions have already been scaled with respect to a ar D% i=1
characteristic length ro. The computed force and moment vectors, dQs dn 10 <
if nondimensionalized, will have scales (pnab) and (prabro), re- # - QEE. =z 21 G3*P*A*B* (81)
spectively, as may be easily seen from the above analysis. Thus, ';
2757 27 5 ZS:E + 95—3—2 = z—gEGE*Pi*A*B*
F=""2UF* b, = X 2 . =
3 it ;pHialbt 3 ‘=1F| pHiVOA B: where
and (26) F* G-* Q.
9 2 X X
27 27 _ . A ¢ mry
G:Téci*pﬂiaibim:TQGi*pHiyozAiBi Fry = F* (G =G and (50 =8=0w /7o
Ex G* Q;

where F* and G* will represent the dimensionless force and mo-
ment vectors and the index i refers to the races.

Now since the ball position relative to the races is a function of
time, the Hertzian parameters py, @ and b will vary with time. If
the static values of these parameters are pr® a% and b° then
clearly the static ball load Q° is

2 2
QD = Eﬂpyoaobo = gﬂpHO’VOZAOBO (27)

Equations (26) and (27) may now be combined to obtain

2
F=¢q ZlFi*Pi*A XB*

and (28)
2

G = Q, gGi*P,-*A XB*

The selection of outer or inner race contact for the variables
pu®, a% and bO is arbitrary since their product at both races is
equal, these parameters are determined for the outer race con-
tact. Equation (28) may now be substituted in equations (1) and
(2) to derive the time scale.

[0
T=1 ——Q
mry

Assuming the ball to be spherical (moment of inertia I = md?/
10), the equations of motion may be written in the following di-
mensionless form.

(29)

2

d*x

darT? = %Ezi*Pt*A B

—dZR __dzn : x D % * *

i (R, + R)d‘r? = EMFT:' P*A*B; (30)

2
d*n dR dn D KA KR
(R+Re)d7‘z+2d'rd‘r‘,z}iF"iP‘A’Bi
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By selecting the ball radius for the characteristic length, ro, it
is found that all variables in equations (30) and (31) are of the
same order and, hence, the formulation is suitable for numerical
integration. A Fourth Order Runga-Kutta-Merson method [5] is
used to integrate the equations of motion. This scheme requires
an additional evaluation of the derivatives at each time step to
estimate the truncation error. Thus, a test on convergence of the
obtained integrated solutions is possible.

Results
A typical angular contact bearing is selected arbitrarily to ob-
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Fig. 7 Contact loads and dynamic forces and moments
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tain numerical solutions of the above system of differential equa-
tions of motion. The geometry of the selected bearing is defined
by the following parameters

Number of balls =19
Outer race curvature factor = 0.52
Inner race curvature factor = 0.52
Ball diameter = 0.59375in.
Pitch diameter = 4.13390 in.
Contact angle = 25 degrees

For obtaining steady state solutions with the above lubrication
models, a thrust load of 200 1b and inner race rotation of 15000
rpm is assumed. The required time to reach a steady state will
clearly depend on the selected initial conditions. The traction
coefficients in the rolling directions at the center of the inner race
contact in the range of such operating conditions are shown in
Fig. 5 for the various traction models.

With the objective of comparing the steady state solutions with
those obtained by simple force balance computations using outer
race control, dynamic solutions are obtained with the above three
lubrication models. The initial conditions in each case were ob-
tained from the quasi-static outer race control solution. The re-
sults are compared in Table 1. It is seen that, since the traction
coefficients in Model I and II are generally large, the two steady
state solutions are fairly close to the quasi-static solution. This
primarily implies that outer race control hypothesis may even
hold under some EHD lubrication conditions. The main factor
which determines the breakdown of this simple hypothesis is the
general order of magnitude of the traction coefficient as clearly
seen by the results of Model III. In this case, a relatively large gy-
roscope becomes possible and, hence, the ball angular velocity
tends to become parallel to the bearing axis. Harris [8] has re-
ported similar findings from his quasi-static analysis. Also, Hira-
no [10] has presented experimental evidence of such a behavior.

Although the results obtained with Model I and II are close to
the quasi-static solution, no such general conclusion may be de-
rived. It should be noted that the magnitude of the traction coef-
ficient in both of the above models depend on the lubricant prop-
erties at the operating temperatures. Thus, in general for deter-
mining the ball motion precisely it may be necessary to solve the
equations of motion. A significant necessity of a dynamic simula-
tion arises when the bearing is subjected to some variations in the
operating conditions. To illustrate this effect with lubrication
Model II, the above bearing with 200 Ib thrust load is assumed to
be initially operating at 12500 rpm and the inner race speed is
suddenly increased to 15000 rpm. In fact the inner race is subject-
ed to a constant acceleration of 108 rpm/sec to obtain the desired
2500 rpm increment in race speed. Such a step change in speed is
perhaps an exaggeration. Nevertheless, for the dynamic solutions
obtained with such conditions provide considerable insight into
the transient ball motion and bearing skid.

Fig. 6 summarizes the ball motion completely in dimensionless
form. The initial transient in the variables defining the center of
ball are primarily due to selected initial conditions which were
determined by outer race control at 12500 inner race rpm. The
value of dimensionless time, 7, at which the inner race reaches
full speed of 15000 rpm is 2. It is clear that although the ball an-
gular acceleration components about the § and £ go to zero fairly
rapidly, the 2 component and the orbital acceleration component
assume a fairly constant value. This primarily corresponds to the
flat part of the traction curve in Fig. 5 at high slip velocities. The
small but gradual changes in the X and R coordinate of the cen-
ter of the ball basically denote change in contact angle due to the
increasing centrifugal force as the ball accelerates in the orbital
direction. During the total time shown in Fig. 6 the ball center
has moved about 7 radians, i.e., it has travelled just over one rev-
olution. The steady increase in » and ws essentially determines
the process of skidding in the bearing. From these rate of changes,
the time required before the bearing reaches a steady state con-
figuration may be easily estimated if the final motion is known,
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which may be efficiently determined by integrating the differen-
tial equations of motion with another set of initial conditions. The
steady state motion obtained in this way is shown by dashed lines
in Figs. 7 to 9 when the solid curve represents the transient mo-
tion in dimensional form.

The rate of increase in contact load at the outer race due to the
increasing centrifugal force is shown in Fig. 7. Also shown in this
figure are the gyroscopic moments and the contact angles. As
pointed out above, the initial transients in the contact angle are
perhaps due to the selected initial conditions. Fig. 8 shows the
angular velocity components and the spin-to-roll ratios. It is seen
that the ¥ and 2 components of the angular velocity vector do not
change appreciably and only the £ component and the orbital ve-
locity are effected by the sudden acceleration of the inner race.
The orbital velocity is represented by the parameter A in Fig. 8,
which is defined as

Ball orbital velocity

A= Race angular velocity

From the nondimensional results shown in Fig. 6 and the rele-
vant time scales defined earlier it can be estimated that the
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steady accelerations of the orbital and rotational motion about
the % axis are approximately 3 X 10% and 4 X 10° rpm/sec, re-
spectively. Thus the time required for reaching the steady state
configuration will be approximately 0.02 to 0.04 sec. It should be
noted that the acceleration does have a positive gradient with re-
spect to time due to the nature of the traction model. In other
words, for large slip rate the traction increases as the slip rate de-
creases.

Fig. 9 shows the slip rates and corresponding traction coeffi-
cient in the center of the contact ellipse in the direction of rolling.
Also plotted in this figure are the torques about the bearing axis
and a QV value which is defined by the integral over the contact
ellipse of the product of normal load and the absolute slip veloci-
ty. The practical significance of this parameter lies in the estima-
tion of wear during skidding. From the classical wear theories,
wear rate is primarily expressed in terms of the relation

w _ KQV

ind/sec
where W = wear rate (in3/sec); K = wear coefficient; Q = normal
load (Ib); V = sliding velocity (in/sec) and H is the hardness of
the material (Ib/in2).
Applying the above relation incrementally over the contact el-
lipse the wear rate is expressed as
K ! - - -
w=g5 [, u® Q) d
where Q (£) di = dQ is the load over an infinitesimal area and
the integration is performed over the entire contact ellipse.
It is the value of the above integral which is denoted as the @V
value in Fig. 9. Symbolically

Qv = [} u® @® dt

Thus, the results shown in Fig. 9 may be readily used to com-
pute the expected wear due to skidding if the hardness of the ma-
terial is known and the wear coefficient is approximated. The
proposed analysis and the computer program developed during
the present investigation thus becomes a very practical design
tool for bearing selection or design against excessive wear due to
skidding in applications where the races are subjected to acceler-
ations or retardations. Also, a study of the transient solutions due
to any given acceleration rate of the rotating race(s) as a function
of applied thrust load will provide a relationship between wear
due to skidding and the applied load. This realistic relationship
will replace the simplified relation used by Poplawski and Mau-
riello [15] in their model for designs against skid.

Conclusions

A dynamic analysis is presented to analyze the transient ball
motion in angular contact ball bearings under realistic EHD trac-
tion conditions at the ball-race contacts. The generalized differ-
ential equations of motions are solved with prescribed initial con-
ditions and hence the analysis is free of simplified and sometimes
controversial kinematic hypotheses. It is shown that large dis-
crepancies between the general motion and the simplified motion
obtained by outer race control assumption exist when the traction
coefficient is low enough to allow gyroscopic slip. In fact, the ball
angular velocity vector tends to become parallel to the bearing
axis under such conditions.

The generalized dynamic analysis and the computer program
developed in this investigation is presented as a design tool for
applications where the bearing is subjected to skid due to acceler-
ation of the races. The formulation not only estimates the expect-
ed wear during skid but also provides a means to determine the
required preload for reducing excessive skid. In summary, a com-
plete analysis for both the steady state and transient ball motion
is presented under prescribed operating conditions.

It should, however, be noted that the present analysis is free of
any separator effects which may influence the ball motion. In fact
it is necessary to couple the generalized ball motion presented
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here with the generalized equations of motion of the separator.
The author hopes to include such effects and also other system
dynamic factors, such as race dynamics, in the anticipated future
investigations.
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APPENDIX

The Hertzian contact solutions for the ball race contacts have
been summarized by Harris [9]. Some of the relevant expressions
are summarized here. In the case of an elliptical contact, the
length of semimajor and semiminor axes of the ellipse and the
contact deflection are determined by the relations

0 = )’
b = b*(Z—I?'%p—)“s
5 = 6 5—%‘))“3 : %’
where
2
e R O N L r

T/2 1
§=[""11 - -3 sino]'” do;

/2
F = for 1-a- €i2) sin’@]!/? dg
200 = Py + P2 + Py + Py iS the sum of curvature;
1 _1- vE +1-
E' El 144
a/b is determined by solving the equation

(2 + NE-2F  (pp —p) + (orn — Pip)
(e2 -1 2op

The dimensionless curvature is defined by Zp* = Zpro when ro
is the characteristic scaling length. All of the above equations are
applied to both the inner and outer race contacts. The subscripts
1 and II denote race and ball and 1 and 2 denote the direction of
rolling and the direction normal to rolling.

o2
II and the ratio

€ =
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