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Generalized Dynamic Simulation of Skid

in Ball Bearings

Pradeep K. Gupta*
Mechanical Technology Inc., Latham, N.Y.

A new analysis for determining skid in ball bearings is presented in terms of a generalized inte-
gration of the differential equations of motions of the ball under prescribed traction-slip relationship
at the ball race contacts. The analytical formulation is free of assumptions like ““race control’”’ or
‘““no gyroscopic slip’’ and the ball motion is defined in the generalized six degrees of freedom system.
Based on the nature of available elastohydrodynamic traction data, a traction-slip relationship is
postulated and the motion of the ball is examined when one of the races is subjected to an angular
acceleration. The solutions predict both the magnitude of slip velocities and the expected wear rates
for a prescribed wear coefficient. Influence of preload is examined and the capability of the present
formulation in determining the required preload to prevent skidding is demonstrated. The computer
program developed to obtain the time dependent ball motion is introduced as an up-to-date design
tool in predicting skid and ball motion as a whole in angular contact ball bearings.

Nomenclature
a = length of semimajor axis of contact ellipse, in.
A = dimensionless semimajor axis
b = length of semiminor axis of contact ellipse, in.
B = dimensionless semiminor axis
d = ball diameter, in.
D = dimensionless ball diameter
F = applied force vector, 1b
F* = dimensionless applied force vector
G = applied moment vector, in.-
G* = dimensionless moment vector
1 = ball moment of inertia, l1b-in.-sec?
K = wear coefficient
m = mass of the ball, 1b-sec/in.2
bH = maximum Hertz pressure, Ib/in.2
Q = ball race contact load, 1b
Qo = static ball-race contact load, lb
R = dimensionless radial position
Te = pitch radius, in.
o = characteristic length, in.
t = time, sec
u = slip velocity vector, in./sec
w = wear rate, in.3/sec

T = dimensionless time

Coordinate Frames

(x, r, n) = inertial frame

(%, 9, 2) = ball frame

(x, ¥, 2) = coordinate frame along the contact load
(¢,¢) = axesin the contact ellipse

I. Introduction

THE increasing speeds and severity of operating condi-
tions of modern high speed propulsion systems has re-
sulted in a substantial interest in the dynamics of rolling
element bearings generally used in these advanced appli-
cations. Most of the kinematic treatments of ball bearings
until recently have been limited to the hypotheses of inner
or outer race control postulated by Jones!2:13 and, thus,
the ball angular velocity vector is clearly defined and a
quasi-static force balance type of calculation is carried out
to estimate the bearing behavior. Based on such simpli-
fied hypotheses, Poplawski and Mauriellol5 presented a
simple analysis for predicting skidding in angular contact
ball bearings.

Harris” has recently proposed that race control is gener-
ally valid for high-speed bearings when the traction coeffi-
cient at the ball race contacts is high enough to prevent
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any gyroscopic slip. Also, in his later work® it has been
pointed out that these simple kinematic hypotheses do
not hold under elastohydrodynamic conditions. With a
very simple elastohydrodynamic traction model, Harris8
has modified the existing force balance type of analysis to
avoid the use of race control theories. The convergence of
the solution of the nonlinear equations in such a modified
quasi-static analysis will strongly depend on the traction-
slip characteristics. Furthermore, in applications where
the balls are continuously accelerating and decelerating a
force balance type of computation may be quite meaning-
less.

A dynamic formulation of motion of the various bearing
elements has been presented by Walters.1®8 This work is
basically concerned with the dynamics of the separator
and a constrained ball motion is assumed. Nevertheless,
the resulting differential equations of motion are integrat-
ed to obtain the true motion. The constraints on the ball
motion require that the contact angles and loads as a
function of the orbital position of the ball are predeter-
mined by a simple conventional quasi-static analysis
where the effects of centrifugal forces have been included.
Thus, the contact angles and loads are not influenced by
any dynamics of the bearing elements. It is clear that this
assumption will not hold if the bearing is subjected to dy-
namic variations in applied load or accelerations of the
races and hence the formulation cannot be used for inves-
tigating skid and other transient phenomenon in ball
bearings. Furthermore, in a lubricated bearing validity of
a constrained motion, established by quasi-static methods
of Jones,12-13 ig still questionable and a generalized solu-
tion of the ball motion in a six-degree-of-freedom system
is necessary.

Although substantial advancements have been made in
understanding the lubrication mechanics at ball-race con-
tacts, formulation of a general lubrication model as re-
quired in the dynamics of rolling element bearings still
needs a considerable research. The classical Dawson and
Higginson’s Theory* for computing lubricant film thick-
ness in cylinderical elastohydrodynamic (EHD) contacts
has been modified by Cheng?:3 to include the thermal ef-
fects and side leakage in elliptical contacts. A substantial
experimental work has also been reported in this area as
compiled by McGrew et al.1¢ Allen et al.? have performed
experiments with a spinning ball under lubricated condi-
tions. Experimental rheological data for some lubricants
are also available.11-16.17 Based on these experimental
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findings, some attempts have been made to derive semi-
empirical traction models.6.16

The primary objective of this paper is to integrate the
generalized differential equations of motion for a ball in a
thrust loaded angular contact bearing under realistic op-
erating conditions. The motion is considered with the six
degrees of freedom and it is shown that these equations
may be integrated with arbitrary traction-slip relation and
any set of initial conditions. Steady-state solutions with
constant but fairly low traction coefficient are compared
with those obtained by simple quasistatic force balance
type of analyses. Based on the qualitative nature of most
of the available lubricant rheology data, a simple alge-
braic correlation is used to simulate a traction model.
Under such simulated conditions, skid in the bearing is
examined as the rotating race is subjected to an accelera-
tion. The effects of the applied thrust load on bearing skid
are also demonstrated.

II. Equations of Ball Motion

The complete motion of the ball is obtained by consid-
ering the translational and orbital motion of the center of
the mass in the cylindrical inertial coordinate frame
(x,r,n) and the rotational motion of the ball about its
mass center in the ball frame (%,9,2) as shown in Fig. 1.
Generally the (%,9,2) system is fixed in the body along the
principal inertial axes, but if the balls are perfectly spher-
ical any orthogonal system is equally convenient to de-
scribe the motion. Hence, %,9,2 is selected such that the 2
axis lies along the radius vector r and the % axis is parallel
to the inertial axis x. Denoting the mass of the ball by m
and the moment of inertia by I, the equations of motion
are described as:

mx = F,

m(# = ') = F, 1)
mri] + 29M) = F,
I&; = G,

Iy — [wshh = Gy 2)

IG)E + I(U'jﬁ = Gg

where F,, F,, F, denote the components of the applied
force vector, F. Gz, G3$, G2 represent the components of
applied moment vector G and the ball angular velocity is
denoted by the components w2, w$, ws. Also, the first de-
rivatives are denoted by a dot (-) over the variable and
the second derivative is represented by two dots. The or-
bital velocity of the ball is clearly 7.

It should be noted that the contact forces at ball-race
contact, and resulting tractive forces (with a prescribed
traction-slip relation) form the applied force and moment
vectors F and G.

I BALL FRAME
.

—
Y///
o~

INERTIAL FRAME

Fig.1 Ball coordinate frames.
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The normal contact forces for any prescribed position of
the ball relative to the races are determined by solving the
equilibrium of the races, as done in most force balance
type of computations.? Knowing these loads, the Hertzian
pressures and contact ellipses at both the outer and inner
race contacts are determined. The tractive force vector
dF, over an infinitesimal area within the contact ellipse is
defined by

dF, = « (u)dQ 3)

where d@ is the normal force, u is a vector defining the
local slip velocity, and « is defined as a local traction coef-
ficient.

Traction coefficient « is generally a function of slip as
shown in Eq. (3), and it is this variation which constitutes
a traction model which should be derived from the lubri-
cant behavior. Most of the available experimental data
shows a qualitative trend that traction initially increases
with increasing slip, reaches a maximum value at some
slip velocity and finally reduces to some asymptotic value
as the slip increases further. Such a qualitative trend may
be simulated by an expression of the form

Ll = (B, + Wou) exp(¥au) + ¥, (4)

In general, the coefficients V1, ¥, ¥3, and V4 will be a
function of operating conditions and the lubricant proper-
ties. However, for the present investigation they are as-
sumed to be constant and the specific values are derived
from the conditions found to be in the range of available
traction data. The conditions used are:

Ikl =0 lul =0
Ikl = Ikl = 0.010 lul = lul, = 20 in. /sec
ikl = lkl, = 0.007 (¢! = oo (5)

With the aforementioned conditions, Eq. (4) is solved to
determine the required coefficients. The resulting simulated
traction model is shown graphically in Fig. 2.

The traction force vector will generally have two com-
ponents; i.e., along the major and minor axes of the con-
tact ellipse. If subscripts 1 and 2 are used, respectively,
these components are defined as

Ky = it/ ul
Ky = | klata/ Vutl
dF‘,1: K1 dQ
dF, = KkydQ (6)

Equation (3) should in general be integrated over the el-
liptical contact area to determine the total tractive force.
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Fig.2 Simulation traction model for ball-race lubricated
contact.
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However, for most bearing geometries it is found that the
length of the minor axis is about four to five times smaller
than that of the major axis. Under such conditions it is
reasonable to neglect the variations in slip along the
minor axis. Denoting the axes of the ellipse as shown in
Fig. 3, the normal load for the indicated infinitesimal area
is determined from the Hertzian pressure distribution.

dQ = 5 puab(l — B)dt (7

where ¢ = £/a and the Hertzian parameters pn, a, and b
are as defined in the nomenclature.

The slip velocity vector is now computed only along the
major axis of the contact ellipse. This computation is
quite forward, although it involves a substantial algebraic
manipulation. The velocities of the race and the race are
primarily transformed to the coordinate frames of the con-
tact ellipse and the slip vector is determined. The total
tractive force is determined by integrating Eq. (3) numer-
ically. The normal force combined with the tractive force
represent the net applied force vector at a ball-race con-
tact.

Moment vector about the ball center is computed by a
vector cross product of the position vector locating the
center of the infinitesimal area in the contact ellipse and
the net force acting on this area. The resulting increment
vector is again integrated numerically to obtain the total
moment vector. The force and moment vectors computed
as described above are transformed in proper coordinate
frames as required by Eqgs. (1) and (2). The formulation of
the differential equations of motion now becomes com-
plete. Since integration is performed numerically, it is
necessary to nondimensionalize these equations. This is
accomplished by defining the following dimensionless
variables

X =x/7, R=(r—v)/7,

F* = F/@P*AB*  G* = G,/07,P*AXB*

i

7= 1@/ mr N/? Q = wlmr /)N ?
P = PH/PHO AX = a/a
B = b,/b° R, =7/7,
D=d/r, (8)

where Q¢ is the static normal ball-race contact load, r. is
the pitch radius, r, is a characteristic length assumed to
be the radius of the ball in this paper, and the subscript i is
used to denote the races (i = 1 represents outer race and ¢
= 2 denotes inner race). The selection of scaling Hertzian
parameters py°, a°, and b° is arbitrary, and the static
values at the outer race contact are used. With the previous
definitions and assuming the ball to be perfectly spheri-
cal (moment of inertia [ = md2/10), Egs. (1) and (2) are
reduced to dimensionless forms

e N

le o >

Fig.3 Contact ellipse.
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Table 1 Comparison of steady-state dynamic
solution with the available quasi-static solution

Quasi- Dynamic
static force analysis with
balance traction
Parameter computation ceeff. = 0.007
Ball angular velocity “x 51,670 57,950
(rpm) Y " = 0 121
wy 3 591 380
Ball orbital velocity 7 955 7 947
rprn) 0 0.0823
. . outer race . ;
Spin-to-roll ratio inner race 0.689 0.754
Contact angle outer race 4.074 5.358
(deg) inner race 37.70 37.51
Contact load outer race 109.9 108.9
(Ib) inner race 17.2} 17.29

d*x/drt = i:lin*Pi*Ai*Bi*
2

d’R/d72 — (R, + R)d*n/ar?) = Zl) F,* P* A By*
i=

2
(R + R)d%n/ar) + 2(dR/dr)(dn/d7) = Zani* P*AfB*
9)

and
2

dQy/dr = 10/ P20 Ge* P*A* B*
i=1

2
dQ/dT — Quldn/dT) = 10/ P 23 Gy* P*A* B*

i=1

2
A/ dr + Qqldn/dr)= 10/ D21 Gs*PXA*B*  (10)
i=1

A fourth-order Runga-Kutta-Merson method? is used to
integrate the equations of motion. This scheme requires
an additional evaluation of the derivatives at each time
step to estimate the truncation error. Thus, a test on con-
vergence of the obtained integrated solutions is possible.

III. Results

A typical angular contact bearing is selected arbitrarily
to obtain numerical solutions of the above system of dif-
ferential equations of motion. The geometry of the select-
ed bearing is defined by the following parameters: number
of balls = 19; factor = 0.52; ball diameter = 0.59375 in.;
pitch diameter = 4.13390 in.; and contact angle = 25°. ,

For the purpose of comparing the steady-state solutions
with the solutions obtained by simple force balance type
of quasi-static computations, the bearing is assumed to be
operating with a 200 1b thrust load and inner race rotating
at 15,000 rpm. These solutions are very similar to those
obtained by Jones!2:13 and Harris.® The initial conditions
for the dynamic analysis are determined by the outer-race
control solution and a constant traction coefficient of
0.007 is assumed. Under such conditions if the steady-
state dynamic solution and the outer race control quasi-
static solution are closely the same, then very small accel-
erations of the ball will result. However, it is found that
with such a low traction coefficient gyroscopic slip of the
ball is possible and the steady-state solution is substan-
tially different from the outer race control solution where
no gyroscopic slip is allowed. The solutions are compared
in Table 1. It is clearly seen that a large gyroscopic slip
develops and the ball angular velocity vector ends to be-
come parallel to the bearing axis. Harris® has reported
similar findings from his quasi-static analysis. Also, Hira-
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Fig.4 Dimensionless solution for 200-1b thrust load. Inner
race accelerating at 50,000 rpm /sec.

nol® has presented experimental evidence of such a be-
havior. The most interesting solutions are found when the
race is accelerating. Such a condition is relevant in case of
start-stops or acceleration to operating speed from the idle
speed. Under such transient conditions, significant skid
may be developed in the bearing. The dynamic analysis
presented here simulated such a dynamic behavior in an
elegant manner when the traction is determined by the
hypothetical model shown in Fig. 2. With a 200-1b thrust
load and static condition, the inner race of the bearing is
accelerated at the rate of 50,000 rpm/sec. The equations
of ball motion are integrated with these conditions and
the results are shown in Fig. 4 in dimensionless form.
Since the traction coefficients levels off to an asymptotic
value with increasing slip, the ball soon develops fairly
constant accelerations. A steady increase in the compo-
nents Oz, Q2, and the orbital velocity 7 is clearly seen in
Fig. 4. There is also a gradual increase in the component
23, however, the rate of change is small because this is
directly related to the gyroscopic moment. Similar solu-
tions are also obtained with the thrust load increased to
800 1b as shown in Fig. 5. Since the time scale is inversely
proportional to the static ball load [see Eq. (8)], it is ex-
pected that the time for initial transients will be reduced
by a factor of two when the applied load is increased from
200 to 800 lb. This is indeed observed by comparing Figs. 4
and 5.

The contact loads and dynamic forces and moments on
the ball are plotted as a function of time in dimensional
form in Fig. 6. It is clearly seen that as the race speed in-
creases, the ball accelerates and increases in centrifugal
force results in a decreasing contact angle at the outer
race. The contact load also increases. At the inner race, as
might be expected, the contact angle increases and the
load decreases. Magnitudes of gyroscopic moments are
also shown in Fig. 6. The solutions for the 200-1b thrust
load, shown in the lower half of Fig. 6, are compared with
those obtained with a 800-1b thrust load shown in the
upper half of the diagram.

Ball angular velocities for the two cases are compared in
Fig. 7. It is interesting to see that the ball motion starts in
a mode close to inner race control but very rapidly the
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Fig.5 Dimensionless solution for 800-1b thrust load. Inner
race accelerating at 50,000 rpm /sec.

spin-to-roll ratios on ball races become almost equal as
the ball continues to accelerate. It is expected that as the
ball velocities increase to the steady state mode the spin
to roll ratio on the outer race will increase and if the trac-
tion coefficients are high enough to prevent gyroscopic
slip, the solution will tend towards an outer race control
mode. Bearing skid under such dynamic conditions is gen-
erally defined by variation in a parameter \, which is a
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Fig. 6 Comparison of ball loads and moments for the 200-1b
and 800-1b applied thrust loads.
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Fig.7 Comparison of ball velocities in case of the 200-1b and
800-1b thrust loads.

ratio of ball orbital velocity to the rotational velocity of
the race.

_ orbital velocity of the ball
~ angular velocity of rotating race

(11)

The variations of this parameter are also shown in Fig. 7.
It is clearly seen that the time required to overcome the
initial transients is much smaller with the 800-1b load
than that in the 200-Ib case. This signifies a lesser extent
of skidding with the increased thrust load as might be ex-
pected. The severity of skidding is seen more clearly in
Fig. 8 where the slip velocity in the center of contact and
along the rolling direction are plotted. It is seen that at the
inner race contact the slip with a 200-1b thrust load has
reached a value of about 30 in./sec in 18 msec and it is
still increasing while the slip with 800 lb load reaches a
maximum value of only about 2 in./sec and it has already
begun to reduce in a time of only about 3 msec. Slip rates
at the outer race contact will be generally small since only
the inner race is accelerating in this case. This is also seen
in Fig. 8. The component « of the traction coefficient in
the rolling direction are also plotted in Fig. 8. The nega-
tive signs just correspond to the direction of slip, which is
plotted in Fig. 8 as the velocity of the race relative to the
ball. It is interesting to see that in spite of increasing the
applied thrust load from 200 to 800 lbs, there is only a
small increase in the torque on the races. The explanation
to this directly lies in the fact that the traction coeffi-
cients are quite lower, due to lesser skidding, in the case of
a 800-1b thrust load as clearly seen in Fig. 8.

From a design standpoint, it becomes important to de-
termine the wear due to such accelerations and resulting
skid in the bearing. Based on the steady accelerations and
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Fig. 8 Variations in slip, bearing torque, traction coefficients
and @V values in case of the 200-1b, and 800-1b thrust
loads.

roughly estimating the final steady-state motion, the time
required to reach steady state can be easily estimated.
Thus if the wear rate during acceleration is determined,
the total wear in an acceleration cycle may be deter-
mined. This will help determine the number of start-stops
or relevant accelerations which the bearing can survive
before it has worn excessively. These wear rates are deter-
mined by a @V value which is defined by the integral over
the contact ellipse of the product of normal load and the
absolute slip velocity. From the classical wear theories,
wear rate is primarily expressed in terms of the relation

W = (KQV/H) in.*/sec (12)

where W = wear rate (in.3/sec); K = wear coefficient; @
= normal load (Ib); V = sliding velocity (in./sec) and H is
the hardness of the material (Ib/in.2). Applying Eq. (12)
incrementally over the contact ellipse the wear rate is ex-
pressed as

W= &/H) [ aB)QddE (13)

where Q(%) d¢ = dQ is the load over an infinitesimal area
and the integration is performed over the entire contact
ellipse.

It is the value of the previously mentioned integral
which is denoted as the @ V value in Fig. 8. Symbolically

Qv = [ uE)QE)ai (14)

Thus the results shown in Fig. 8 may be readily used to
compute the expected wear due to skidding if the hard-
ness of the material is known and the wear coefficient is
approximate. It should be noted that, in general, the wear
coefficient may depend on the load and rolling and sliding
velocities since these factors influence the elastohydrodyn-
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amic film thickness. Also, it should be recognized that
skidding may not always result in wear and much more
additional work is necessary for a better understanding of
the factors that result in wear when skidding occurs.
Thus, prediction of wear based on the @V values should
only be treated as a first approximation. With due recog-
nition to these factors, if the QV values for the two cases
shown in Fig. 8 are compared, it is seen that the probable
wear rate at the inner race with the 200-1b load is seyveral
orders of magnitude larger than that with the 800-l1b ap-
plied load. In fact, the QV value for the lighter load is
continuously increasing during the time for which solu-
tions are plotted in Fig. 8. In general, an optimum thrust
load will be determined by a compromise between wear
and fatigue for prescribed operating conditions for a bear-
ing. The proposed analysis and the computer program de-
veloped during the present investigation thus becomes a
practical design tool for bearing selection or design against
excessive wear due to skidding in applications where the
races are subjected to accelerations or retardations. The
study of the transient solutions due to any given accelera-
tion rate of the rotating race(s) as a function of applied
thrust load will provide a relationship between wear due
to skidding and the applied load. This realistic relation-
ship will replace the more simplified relation used by Po-
plawski and Mauriello!5 in their model for designs against
skid.

Under more realistic lubrication conditions, than those
determined by the hypothetical model used in this paper,
it will only be necessary to replace Eq. (4) by appropriate
lubrication model. The author expects to present some re-
sults based on such sophisticated traction models, derived
from existing lubricant data, in the very near future.

IV. Summary

A dynamic analysis in terms of differential equations of
motion is presented to analyze the transient ball motion
in angular contact ball bearings under simulated EHD
traction conditions at the ball-race contacts. The general-
ized differential equations of motions are solved with pre-
scribed initial conditions and hence the analysis is free of
simplified, and sometimes controversial, kinematic hy-
potheses; e.g., inner or outer race control. It is shown that
large discrepancies between the general motion and the
simplified motion obtained by outer race control assump-
tion exist when the traction coefficient is low enough to
allow gyroscopic slip. In fact, the ball angular velocity
vector tends to become parallel to the bearing axis under
such conditions.

The generalized dynamic analysis and the computer
program developed in this investigation is presented as a
design tool for applications where the bearing is subjected
to skid due to acceleration of the races. Two typical ex-
amples of start-up are considered and it is demonstrated
that the formulation not only estimates the expected wear
during skid but also provides a means to determine the
required preload for reducing excessive skid. In summary,
a complete analysis for both the steady-state and tran-
sient ball motion is presented under prescribed operating
conditions.

V. Recommendations

A generalized ball bearing dynamics program should be
capable of treating both the motions of ball and the cage.
The dynamics program developed in this paper does not
treat the cage mechanics, whereas the available programs
which do consider cage dynamicsl® assume a simplified
constrained motion of the ball. Therefore, it is recom-
mended that the present analysis be extended to include
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the cage dynamics. Skidding is generally quite prominent
in roller bearings; however, the formulation of generalized
equations of motion of the roller under realistic traction
conditions is still far from complete. Such a formulation
will provide a roller dynamics program similar to the one
presented here for ball bearings. A final step will be to
couple the roller dynamics with the dynamics of cage to
obtain a generalized roller bearing dynamics program. It
is expected that these proposed advancements will not
only provide a major contribution to the rolling element
bearing technology but will also provide the designers
with the most up-to-date design and diagnostic tools.
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