Pradeep K. Gupta, Honorary Life Member STLE PKG, Inc. Clifton Park, NY 12065 and Erwin V. Zaretsky, Fellow STLE Consultant Chagrin Falls, OH 44022

STLE 69th Annual Meeting & Exhibition Lake Buena Vista, FL May, 18–22, 2014

PKG Inc

Introduction

- Fundamental life equation
- Lundberg-Palmgren (LP) equation
- New life equation
 - Modification of the LP equation
- Computation of model constants from Regression Analysis of Experimental Data
- Summary

Introduction

- Lundberg-Palmgren formulation of 1940-50's
 - 52100 Bearing Steel of 1940's
 - Constant Material Properties
 - Current state of the art
- Modern materials Processes Ceramics
 - Property variation with temperature
- Currently used original LP models inadequate
- Models based on limiting shear stress (Ioannides & Harris 1985)
 - Controversy on existence of shear limit

Generalized Models for Rolling-Element Fatigue Part 1: Analytical Formulation Present Work Scope

- New Generalized LP model
 - Variable material properties
- Zaretsky Model (1987)
 - Shear exponent independent of life scatter
 - Life independent of depth of failure stress
 - Failure stress is maximum subsurface shear stress compared to maximum orthogonal shear stress in LP model

Introduction

- Fundamental life equation
- Generalized Lundberg-Palmgren (LP) equation
- New Life equation
- Computation of model constants from regression analysis of experimental data
- Summary

Fundamental Life Equation

Lundberg-Palmgren-Weibull Equation - Applicable to both point and line contacts $\ln\frac{1}{S} \sim \tau_o^c V z_o^{-h} N^m$ $\ln\frac{1}{S} = K_{LP}\tau_o^c V z_o^{-h} N^m$ $\tau_o \sim p_H$ (Max Hertz Contact Stress) $V \sim a$ (Major Half Width) z_o (Shear Stress Depth) d (Track Dia) $z_o \sim b$ (Minor Half Width) N = Life in contact cycles S = Survival probability c,h,m are empirical exponents 2a

Implementation for Bearing Life Computations

$$\ln\frac{1}{S} = K_{LP}\tau_o^c V z_o^{-h} N^m$$

- ✤ Using elastic contact solutions express shear stress, and contact half width in terms of applied load
 ➔ Thereby obtain a load-life relations
- From the above compute a load, Q_c, under which the bearing will survive for one million revolutions with a given survival probability

→ This is defined as dynamic load capacity

Now define life as
$$L = \left(\frac{Q}{Q}\right)$$

 $L = \left(\frac{Q_c}{Q}\right)^p$

L = Life, Q = Applied Load, and p = Load - Life exponent

PKG Inc

Elasticity Solution Contact Pressure

Point contact

$$p_H = \frac{3}{2} \frac{Q}{\pi ab}$$

$$p_H = \frac{Q}{\pi ab}$$

PKG Inc

Elasticity Solution Contact Half Widths

Line contact

a = constant (roller half length)

$$b = \left[\frac{2}{\pi a \sum \rho} \frac{Q}{E'}\right]^{1/2}$$

PKG Inc

Elasticity Solution Subsurface Shear Stress and Depth

10

Introduction

- Fundamental Life Equation
- Lundberg-Palmgren (LP) equation
- New life equation
- Computation of model constants from regression analysis of experimental data
- Summary

Original Lundberg-Palmgren (LP) Life Equation (1947-52)

Empirical Exponents and Model Constants

- Empirical model constants
 - Point contact $A = 2.4640 \text{ x} 10^7 \text{ N/m}^{1.80}$
 - * Line contact $B = 1.9817 \times 10^8 \text{ N/m}^{1.852}$
 - Survival probability S = 0.90
- Empirical exponents $c = \frac{31}{3}$ $h = \frac{7}{3}$ $m = \frac{10}{9}$
- Life Expressed in million of race race revolution with contact frequency defined as

$$u = \frac{\text{Orbital Ang Velo} - \text{Race Ang Velo}}{\text{Race Ang Velo}}$$

PKG Inc

Original LP Equations (1947-1952) Based on work by Weibull

Point Contact – Ball Bearings

$$Q_{c} = A \left[\left(\frac{2f}{2f-1} \right)^{0.41} \left(\frac{1 \mp \frac{D \cos \alpha}{d_{m}}}{1 \pm \frac{D \cos \alpha}{d_{m}}} \right)^{1.39} \left(\frac{D}{d_{m}} \right)^{0.30} D^{1.80} \right] \left[u^{-1/3} \right] \qquad L = \left(\frac{Q_{c}}{Q} \right)^{3}$$

Line Contact – Roller Bearings

$$Q_{c} = B\left[\left(1 \mp \frac{D}{d_{m}}\right)^{29/27} \left(\frac{D}{d_{m}}\right)^{2/9} D^{29/27} (l = 2a)^{7/9}\right] \left[u^{-1/4}\right] \qquad L = \left(\frac{Q_{c}}{Q}\right)^{4}$$

 Limitation – elastic properties are constant and part of model constant

PKG Inc

More Generalized Life Equation

Life equation is a function of bearing geometry, material properties and operating conditions:

 $L = Kf(E,v)f(\text{Geometry})f(Q,\Omega)$

For Unit Life (one million rev) a characteristic load, Dynamic Capacity, is defined as:

 $Q_c = Kf(E,v)f(\text{Geometry})f(\Omega)$

The life is then defined as:

 $L = \left(Q_c / Q\right)^n$

• Constant K in the equation for Q_c is determined by correlating predicted life with experimental data

New Generalized LP Life Equation Distinct Geometrical and Materials Factors

Point contact

$$Q_{cLP} = \Phi_{LP} A_{LP} \kappa_{LP}^{-0.30} \left(\frac{G_{LP}}{\lambda_E}\right)^{2.10} u^{-1/3} \quad L_{10} = \left(\frac{Q_{cLP}}{Q}\right)^3$$

Line contact

$$\overline{Q}_{cLP} = \overline{\Phi}_{LP} B_{LP} \kappa_{LP}^{-0.2222} \left(\frac{\overline{G}_{LP}}{\lambda_E}\right)^{1.2963} u^{-0.2469} \qquad L_{10} = \left(\frac{\overline{Q}_{cLP}}{Q}\right)^{4.050}$$

Newly introduced materials property factor

$$\lambda_E = \frac{E'}{E'_{52100}}$$

PKG Inc

Introduction

- Fundamental Life Equation
- Lundberg-Palmgren (LP) equation
- New life Equation
- Computation of model constants from regression analysis of experimental data
- Summary

Generalized Life Equations Zaretsky Model (1987)

Recall fundamental Lundberg-Palmgren equation

$$\ln\frac{1}{S} \sim \tau_o^c V z_o^{-h} N^m \quad \text{or Life} \quad N \sim \frac{\left(\ln\frac{1}{S}\right)^{1/m}}{\tau_o^{c/m} V^{1/m} z_o^{-h/m}}$$

- Zaretsky proposes
 - Shear stress exponent should be independent on data variability
 - Life should not depend explicitly on depth of critical shear stress
 - Critical shear stress should be maximum shear stress not maximum orthogonal shear stress

Generalized Life Equations GZ Equation – Modified case of LP Equation

 Shear stress exponent should not be dependent on data variability

Shear Exponent : $c \rightarrow cm$

Life should not depend on depth of critical shear stress

Depth Exponent : $h \rightarrow 0$

Critical shear stress should be maximum shear stress not maximum orthogonal shear stress

$$\zeta = \frac{\tau_m}{p_H} \to 0.30 \quad \& \quad \xi = \frac{z_m}{b} \to 0.786$$

PKG Inc

Generalized Life Equations Zaretsky Model Implementation

- Zaretsky Model, although proposed in 1987, it has never been implemented as a viable rolling bearing life equation
- Thus the Zaretsky Model is the basis for the newly proposed Gupta-Zaretsky (GZ) life equation

New Generalized GZ Life Equation Distinct Geometrical and Materials Factors

Point contact

$$Q_{cGZ} = \Phi_{GZ} A_{GZ} \kappa_{GZ}^{-0.2225} \left(\frac{G_{GZ}}{\lambda_E}\right)^{1.5549} u^{-0.2472} \qquad L_{10} = \left(\frac{Q_{cGZ}}{Q}\right)^{4.0444}$$

Line contact

$$\overline{Q}_{cGZ} = \overline{\Phi}_{GZ} B_{GZ} \kappa_{GZ}^{-0.1602} \left(\frac{\overline{G}_{GZ}}{\lambda_E}\right)^{0.8398} u^{-0.1780} \qquad L_{10} = \left(\frac{\overline{Q}_{cGZ}}{Q}\right)^{5.6167}$$

Newly introduced materials property factor

$$\lambda_E = \frac{E'}{E'_{52100}}$$

PKG Inc

Introduction

- Fundamental Life Equation
- Lundberg-Palmgren (LP) Equation
- New Life Equation
- Computation of Model Constants from Regression Analysis of Experimental Data
- Summary

Computations of Model Constants

- Lundberg-Palmgren data is unpublished, besides the model is based on Pre-1940 materials
- Based on recent work by Gupta, Oswald and Zaretsky (STLE 2013 Annual Meeting) NASA/GRC data on 120 mm Turbine Engine Bearing used to compute model constants A_{LP} and A_{GZ}
- ✤ B_{LP} and B_{GZ} derived from validated point contact constants A_{LP} and A_{GZ}

Computations of Model Constants

- Computation of model constants by regression of experimental data
- ✤ 126 Ball bearing life tests in four data sets with failure indices of 10/27, 14/27, 11/26 and 6/26
- Computed values of point contact constants

$$\Phi_{LP} = 1.0 \qquad A_{LP} = 1.2197 \text{ x} 10^7 \text{ N/m}^{1.80}$$

$$\Phi_{GZ} = 1.0 \qquad A_{GZ} = 8.3368 \text{ x} 10^5 \text{ N/m}^{1.332}$$

Line contact constants derived from relation between point and line contact constants

 $\overline{\Phi}_{LP} = 0.90$ (For Calibration) $B_{LP} = 9.7020 \text{ x} 10^7 \text{ N/m}^{1.852}$

 $\overline{\Phi}_{GZ} = 0.90$ $B_{GZ} = 2.0670 \text{ x} 10^7 \text{ N/m}^{1.519}$

The adjustment factor of 0.90 was necessary to match the new LP life with the original LP life in absence of any new experimental data

Computations of Model Constants Comparison of fitted Models to Experimental Data

Gupta & Zaretsky: Part 1: Analytical Formulation

PKG Inc

Validation of Model Predictions

- Using the estimated model coefficients predict life for another bearing for which experimental life data is available
- 3 MDN AISI M-50 VIM-VAR bearing lubricated with MIL-L-23699 operating at 492°K
 - Experimental data with failure index of 6/30
- ✤ Elastic properties of M50 at 492°K
- Generalized models permit elastic modulus variation

Validation of Model Predictions Model Predictions versus Experimental Data

Introduction

- Fundamental Life Equation
- Lundberg-Palmgren (LP) Equation
- New Life Equation
- Computation of Model Constants from Regression Analysis of Experimental Data

Summary

- Generalized models development with distinct materials and geometrical parameters
- Unlike original LP model new generalized models permit arbitrary variation in elastic properties
- In addition to updating LP life equation new GZ life equation is introduced
- Model predictions validated against experimental data
- Generalized models provide relationship between point and line contact model constant

The current work was funded under a US Air Force SBIR Phase I award, Contract #FA8650-13-M-2406.

Copy of this presentation Available at www.PradeepKGuptaInc.com Under the Link: Related Documents

PKG Inc