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fatigue life models for rolling bearings
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Abstract

The critical subsurface shear stress related to rolling contact fatigue is modified to model the effects of residual stress
common in case hardened materials, such as M50-NiL. The role of hoop stress, generated due to race rotation and
shrink fits, is also modeled. It is shown that even relatively low levels of compressive residual stress could contribute to
notable increase in bearing life. An equivalent life modification factor is dependent on both residual stress and applied
load. Model predictions are in agreement with available experimental life data obtained with a 40-mm angular contact ball
bearing with M50-NiL races and silicon nitride balls. The stress modification approach is also applied to model the role of
any fatigue limiting shear stress, such that the solutions converge to validated Lundberg—Palmgren solutions as limiting
stress reduces to zero. However, bearing life predictions at light loads, under any reasonable limiting stress, are unrea-
sonably high. As an alternate approach, the empirical constant in the limiting stress model, with a prescribed limiting
stress, is determined by least-squared regression between model predictions and available experimental life data. With
such an approach, the least-squared deviation between model predictions and experimental data shows a monotonic
increase as a function of the limiting stress with a minimum at no limiting stress. This observation suggests that simple
failure stress modification in the current subsurface stress-based models may not be suitable to implement any fatigue
limiting stress for rolling contacts.
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Intreduction certainly affect the bearing fatigue life. Aside from

Based on the classical works of Weibull,'* the subsur-

face fatigue process in rolling contacts has been trad-
itionally related to an integral of a function of cyclic
subsurface shear stress over the stressed volume.
While the widely used, Lundberg-Palmgren (LP)
model®>* is based on the maximum orthogonal sub-
surface stress, Gupta and Zaretsky,” based on earlier
work of Zaretsky,®’ have introduced a life model
based on maximum subsurface shear stress. In addi-
tion, this recent work has generalized the life
models in terms of distinct geometrical, materials
and operational parameters to present independent
life equations for each of the races and rolling elem-
ents in terms of contact stress at individual rolling
element to race contacts. The individual contact
lives are then statistically summed to compute life of
the entire bearing. These generalized life equations
permit both a change in material properties of bearing
elements and simple modification of critical failure
stress related to fatigue.

Since the imposed residual and hoop stresses affect
the maximum subsurface shear stress, these stresses

the material processes used in the manufacture of
case hardened bearing materials, such as M50-NiL,
transformation of retained austenite into martensite
during bearing run-in induces significant compressive
residual stress which contribute to notable increase in
bearing fatigue life, as demonstrated in early pioneer-
ing work at General Motors.* '? To further validate
the General Motor results, Parker and Zaretsky'?
made residual stress measurements on several
207-size deep groove ball bearings that were run for
different times to establish a suitable pre-stress cycle
to induce significant residual stress. The lives obtained
with these pre-stressed bearings were found to be
twice that of base line bearings under identical applied
load and speed conditions. The increase in life due to
compressive residual stress is often confused with that
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obtained by imposing a fatigue limiting stress. For
example, Lorosch,' based on full scale life testing,
concluded that under low loads with good bearing
lubrication there is no material fatigue; however,
Zwirlein and Schlicht'® found significant amount of
residual stress due to material transformation in the
bearing races used by Lorosch.'*

Bamberger and Kroeger'® in an experimental
investigation reported significant increase in fatigue
life with case carburized M50-NiL over the conven-
tional AISI M-50 steel. Also, Townsend and
Bamberger'” used rolling contact test bars to demon-
strate significant increase in life in line contact with
M350-NiL over AISI 9310. Kotzalas'® has analyzed
the role of residual stress induced during operation
on the stress fields used in bearing life predictions.
Rosado et al.'” in experimental life tests with M50-
NiL reported only a slight increase in life over AISI
M50 but they noted delamination of TiN coating
from cage land surfaces leading to damage of race
surfaces which could have a detrimental effect on
life. More recently, Oswald et al.?* have evaluated
the combined role of residual and hoop stresses
induced by both bearing speed and interference fit
on the races. Modification of critical failure stress to
better model the role of residual and hoop stresses in
bearing races is the first objective of this investigation.

While Lundberg and Palmgren®* used the max-
imum orthogonal subsurface shear stress, and Gupta
and Zaretsky® have suggested the use of maximum
shear stress, loannides and Harris (IH) model*'
is based on a fatigue limiting stress below which no
fatigue may occur and bearing life may be infinite.
Although the fatigue limit may be imposed on

any failure stress, Ioannides and Harris*' imposed
the limit on maximum orthogonal shear stress used
by Lundberg and Palmgren.>* Later Harris and
McCool** implemented the octahedral shear stress,
where the fatigue limit may be readily related to the
von-Mises stress of applicable bearing material.
Harris and Kotzalas®® have documented the applicable
von-Mises stress for several bearing materials.
Implementation of a limiting stress in fatigue life
models based on subsurface shear stress is evaluated
as another application of the critical failure stress modi-
fication approach developed in the present effort. Thus,
modeling the role of fatigue limiting stress in terms of
failure stress modification, and evaluation of the IH
model is another objective of this investigation.

Critical failure stresses in life models

The three most common types of subsurface stresses
that are used to model rolling contact fatigue are max-
imum orthogonal shear stress, maximum octahedral
shear stress, and the maximum shear stress. For a
classical line contact, the variations of these stresses
as function of depth below the surface are shown in
Figure 1. While the shear stresses are expressed as a
ratio, ¢, to the applied contact pressure, the depth
coordinate is scaled relative to contact half width
and expressed as a ratio, £&. For convenience, the max-
imum stress ratios and the corresponding depth ratios
are tabulated in Table 1. Although these solutions are
for line contact, they may also be applied to point
contact in ball bearings, since for most ball bearings,
the contact ellipse is fairly narrow with the ratio of
major to minor contact ellipse greater than 5.
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Figure 1. Critical failure stresses used in fatigue life modeling.

GZ: Gupta—Zaretsky; IH: loannides and Harris; LP: Lundberg—Palmgren.



Gupta

1329

Table |. Critical failure stresses in life models.

& = Stress
¢ = Stress/ depth/
contact minor contact
Stress pressure half width
Maximum orthogonal shear 0.250 0.500
Maximum octahedral shear 0.275 0.660
Maximum shear 0.300 0.786

It may be noted in Table 1 that both the depth and
the failure stress are maximum for the maximum
shear stress, as is used in the model developed by
Gupta and Zaretsky.’

Generalized stress-life models

Life models in rolling bearings have traditionally fol-
lowed the fundamental hypothesis of Weibull,'?
which relates survival probability of a mechanical
component, subjected to a cyclic loading, to an inte-
gral of a function of the critical failure stress over
the stressed volume. With a Weibull modulus m,
the expected life, in number of stress cycles, N, is
written as

1 m
(N) N-/Vf(r)VdV (1)

Depending on the stress field in a rolling contact,
both the definition of a failure stress function and its
integration over the relevant subsurface stressed
region can be quite complex. In the Lundberg and
Palmgren®* implementation, the applicable stress
function is simply assumed as the maximum orthog-
onal shear stress, t,, raised to an empirical exponent,
¢. Perhaps, the assumption is based on certain rolling
contact failures where the spalls appear to be closer to
the edge of the Hertzian contact, where the orthog-
onal shear stress is maximum. The volume of material
above maximum orthogonal shear stress and under
the Hertzian contact is used as the applicable stressed
volume. In addition to the Weibull hypothesis,
Lundberg and Palmgren®* have related the expected
life to the depth, z,, of the maximum orthogonal shear
stress raised to another empirical exponent, /. In the
development of a life equation, both the failure stress
and stressed volume at a given contact are assumed to
be constant. With these assumptions, the expected
life, L, in units of time, with a contact cycling fre-
quency, u, is written as

1\" vV,
- — K-° m 2
(L) e @

The empirical proportionality constant, K, and the
exponents, ¢ and /4, are estimated by appropriate ana-
lysis of model predictions against experimental life data.

Although the variation of the stress function and the
related stressed volume as a function of depth are not
explicitly stated in this simplified life relation, these vari-
ations are implicit in the empirical constant and expo-
nents, since they are derived by correlating the model
predictions to experimental life data.

For practical implementation of the above life
equation to a rolling bearing with prescribed geom-
etry and operating conditions, Lundberg and
Palmgren®* carried out the following:

e The Hertzian contact parameters, such as contact
pressure and half widths, are related to the applied
contact load.

e The maximum orthogonal shear stress and its
depth are related first to the Hertzian contact par-
ameters, as shown in Figure 1, and then to the
applied contact load.

e Using a Weibull distribution function, a character-
istic load under which the bearing could survive
one million revolutions with 90% survival prob-
ability, is then computed and defined as the
dynamic load capacity of the bearing.

e Finally, a simple load-life power relation is stated
to compute bearing life at a prescribed load and
speed.

In view of its simplicity, this load-life relationship
has been the most widely used life model throughout
the rolling bearing industry and it is well recognized as
the classical LP model. The model is well documented
in the text by Harris and Kotzalas.? Since at the time
of model development the AISI 52100 steel was used
for virtually all rolling bearings, constant material
properties are included in the empirical constant.
The dynamic load capacity is therefore a simple func-
tion of operating bearing geometry only.

With the objective of more realistic implementation
of the LP model to bearings with varying material
properties, Gupta and Zaretsky’ have recently gener-
alized the LP model in terms of distinct geometrical
and materials parameters, so that the empirical con-
stant is free of any material properties. In addition,
the failure stress and stressed volume are more flexibly
related to the Hertz contact parameters. This permits
more realistic computation of applicable “effective”
failure stress and the related stressed volume under
arbitrary subsurface stress fields. In particular, the
following parameters are introduced:

e Critical failure stress, T = {py

e Depth of critical failure stress, z = &b

e Width of track for stressed volume computation,
w=na

e Effective stressed volume, V ~ dwz ~ n&dab

e Materials parameter, 1z = E /E%y g0

Here d is the track diameter and E is the com-
monly used composite elastic properties parameter



1330

Proc IMechE Part |: | Engineering Tribology 233(9)

for the two interacting elastic solids, 1/E = (1 — v})/
Ei + (1 — v3)/E,. Note that under default Hertzian
stress field, the parameters ¢ and & assume the
values specified in Table 1 corresponding to the
applicable failure stress. Also, corresponding to
the default track width of 2a, n = 2.

Unlike the load-life relation in commonly used LP
model, Gupta and Zaretsky® have presented a stress—
life relation, where the life is related to the Hertzian
contact stress. For the present purpose of failure stress
modification, the generalized LP life equation is seg-
mented into the stress and stressed volume over depth
terms, and written as

< 2-h
1 (pu)"(pu)™ 3)
L - c+2—h
LP  (PreLp) ™

The dynamic stress capacity, py..p, contains the
empirical constant and the applicable geometrical
and materials parameters for the bearing. For race
life in ball bearings, the dynamic stress capacity equa-
tion is

— 2k 1 m
Prerp = PrpArpr, 37 "2 G G T R (4a)
¢ gl—h
Constant, k;p = % (4b)
. ln%
Reliability factor, a; = (4c)
590
To

Shear stress ratio, {7 p = p_ = 0.25 (default) (4d)
H

Shear stress depth ratio, & p = %" = 0.50 (default)

(4e)

contact width

Contact width ratio, n = = 2 (default)

(4h)

Materials parameter, 1g = (4g)

g
E5210()

1 2—h
Geometrical parameter, G p = d<—) a3 hpr3=2h
2P
(4h)

Q-6
Q,

Cycling frequency, u = (41)

The dynamic stress capacity equation for ball life is
essentially identical to the above, except for the geo-
metrical parameter in equation (4h) and cycling

frequency in (41), are replaced by
|\
Geometric parameter, Gz p = D(—) a3 hpr3=2h
2p
(4))

wp — 9
Q,

Cycling frequency, u, = (4k)

Note that while the suggested LP values of expo-
nents ¢ and / are retained, the empirical constant A; p
is computed by correlating model predictions to
experimental data. This constant is related to the fun-
damental proportionality constant, K, in equation (2).
The factor, @, p, presently set to 1 (one), is for future
use when the empirical constant is modified for fur-
ther customization of the model.

As a point of validation, Gupta and Zaretsky’
have demonstrated that when the applicable material
properties are set to AISI 52100 properties at room
temperature and with the default values of ¢, & and 7,
as stated above in equations (4d), (4e) and (4f),
respectively, the life predictions with the above gener-
alized life model are identical to those estimated by
the commonly used load based LP life model.

In addition to the generalization of LP life equation,
Gupta and Zaretsky’ have presented a new stress-
based life equation where data variability in the stress
exponent, as seen in LP equation (2) is eliminated,
the maximum orthogonal shear stress is replaced by
the maximum shear stress, and by postulating rolling
contact fatigue as a high-frequency phenomenon, expli-
cit life dependence on depth of the failure stress is
eliminated. Thus, the simplified LP equation (2) is
modified as

nN"
<Z) = Kt V" (5)

It may be noted that the above equation conforms
more closely to the original Weibull hypothesis stated
above in equation (1). Similar to the LP equation, the
failure stress and stressed volume may be related to
the Hertz contact pressure, and after separating the
stress and stressed volume terms, the generalized form

of this newly developed Gupta—Zaretsky (GZ) model®
is written as

1 _ en) ) ©)
Loz (puecz)™

Similar to the LP model, the generalized expression
for the dynamic stress capacity for race life in ball
bearing is written as

1

o R T, —
H. — q) GZA GzK cm+2 /Lun+2 G cm+2 Y 2 7a
cGZ GZ E GZ



Gupta

1331

n¢crécz
a)

Constant, kgz =

(7b)

Shear stress ratio, gz = I _ 0,30 (default) (7c)
PH

Shear stress depth ratio, % = &gz = 0.786 (default)
(7d)

(Cl*b*)3

(X0’

Again, the empirical constant, 45, is determined
by correlating model predictions to experimental life
data. Similar to the LP equation, this constant is
related to the fundamental proportionality constant,
K, in equation (5). Similarly, the factor, ®¢, is for
future customization of the empirical constant and is
presently set to 1 (one). Also, note that similar to the
LP equation, xgz, is maintained as a separate con-
stant to permit modification of ¢, &, and n for model-
ing of effective failure stress and stressed volume
under applicable stress fields. The contact cycling fre-
quency is same as that defined for the LP model in
equation (41).

The GZ equation for ball life is again identical to
the above race life equation, except that equation (4k)
is used for the contact cycling frequency, and the geo-
metrical parameter is replaced by

(7e)

Geometrical parameter, Ggz = d

(@b

(=)

Although both the generalized LP and GZ equa-
tions presented above use a constant failure stress and
stressed volume, they do provide a number of param-
eters to customize both the effective failure stress and
stressed volume under arbitrary stress fields. Also, the
effects of variation in failure stress and stressed
volume will be implicit in the empirical constant
when it is estimated by correlation of model predic-
tions to experimental life data.

Geometric Parameter, Gygz = D

(7)

Failure stress modification due to
residual and hoop stresses

Based on the mechanics of material structure and
deformation, residual stress in rolling bearing races
may be classified into two different types:

Type 1 residual stress: This type of residual stress is
generated by the processes used to manufacture
materials, such as case hardened MS50-NiL and
Pyrowear 675. The stress is present in the newly
fabricated races and stays constant as the bearing
is subjected to service.

Type 2 residual stress: As the bearing is subjected to
contact stress, operating temperatures and
repeated cyclic loading, phase transformation of
the race material may lead to significant compres-
sive residual stress. This stress is dependent on
both the applied loading and the duration of
time over which the bearing is in service. Thus,
the stress is time dependent. Systematic procedures
to define this stress as a function of the required
load and time cycles have yet to be developed.

Both types of residual stress generally have a sig-
nificant variation as a function of depth below the
contact surface and the stress fields may be quite com-
plex. However, if the stress fields are well defined, then
finite difference or finite element techniques may
be used to precisely superimpose these stresses on
the subsurface stress field generated by surface load-
ing to determine the applicable integral of the failure
stress function over the stressed volume. Generally,
these numerical procedures are very compute inten-
sive and they may pose significant practical implemen-
tation restrictions in current bearing performance
simulation tools, such as ADORE.* which already
require considerable amount of compute power.
An alternate approach may be to carry out the com-
plex stress field analysis in isolated cases to define an
“effective” failure stress and applicable stress volume
which represent the variable stress field. The custo-
mized parameters, such as, ¢, & and 5, defined in
the above generalized life models, may then be used
in the bearing performance tools to evaluate bearing
performance and life. However, this approach does
require systematic development of procedures to
determine the subsurface stress fields. Presently, the
available data on both Type 1 and Type 2 residual
stress are quite limited. Most published data only pro-
vide estimated values of these stresses. In view of such
limitations, the modeling effort in the present investi-
gation is restricted to constant values of residual
stress, as also investigated by Zwirlein and
Schlicht."” The implementation is also consistent
with the development of fundamental subsurface fati-
gue models, where both the stress function and
stressed volume are assumed to be constant. More
complex analysis to develop customized effective fail-
ure stress and the applicable stressed volume is
deferred until more experimental data on residual
stress fields becomes available. Thus, the analytical
results presented in this investigation provide no
more than a guidance to the role of these stresses.

Similar to the residual stress, high-speed bearing
rotation and interference fits of the race surfaces con-
tribute to circumferential hoop stress. In addition,
thermal expansion of bearing races alters the fits,
thereby affecting the hoop stress. Computation of
this stress is fortunately quite straight forward.
Although this stress also varies with depth, the vari-
ation over the relatively small depth of fatigue failure
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may be insignificant. Hence, a constant stress value
may not be unreasonable to model the role of hoop
stress.

While hoop stress in bearing races is in the circum-
ferential direction, residual stress, in addition to the
dominant circumferential component, may also have
an axial component. The present work only considers
purely circumferential stress, which will not produce
any orthogonal shear stress. The LP model based on
maximum orthogonal shear stress, as formulated
above, is therefore insensitive to such stress modifica-
tions. However, the circumferential stress will gener-
ate maximum shear stress, as used in the GZ model,
so it may be superimposed on the stress generated due
to applied surface loading. Thus, in the present inves-
tigation, modeling of residual and hoop stresses is
restricted to the GZ model.

The maximum shear stress produced by prescribed
values of residual and hoop stresses will only affect the
magnitude of the failure stress and the depth at which
the maximum occurs will be unaffected. This is also
demonstrated by Zwirlein and Schlicht.'> Thus, only
the stress term in the GZ equation (6) is modified, and
the volume term remains unchanged. If o, is the resi-
dual stress and oy, is the hoop stress, then the equiva-
lent maximum shear generated by these stresses may
be written as

, =+ 40
T, ) ®)

where the positive and negative signs correspond to
tensile and compressive stress respectively.

Using the maximum shear to Hertz pressure ratio,
CGz, as defined above for the GZ model, the pressure
term corresponding to the maximum shear stress vari-
ation in the life equation (6) may be modified as

U (s ea2) o o
- an+2
Loz (PHGZ) ™

If Lgz, is the contact life without any stress modi-
fication, then the life after shear stress modification as a
result of residual and hoop stresses may be written as

1 1 o, oy, jIC
— = 1+ + 10
Loz Lz [ 2puicz  2puicz (19)

Table 2. M50-NiL hybrid ball bearing geometry.

When the expression within the brackets is zero or
negative, the modified life is infinite. The above life
modification may also be expressed in terms of a life
modification factor, ¥g, applied on the life computed
without any residual or hoop stress.

Lcz = YrLGzo (11a)
Oy O -

=|1&+ + 11b

VR [ 2pnicz 2PH§GZi| (110)

In order to demonstrate the practical significance
of such a life modification approach, the above life
modification is implemented in the bearing dynamics
code ADORE.** along with the base life equations.
Bearing life is then predicted for a 40-mm angular
contact ball bearing, used earlier by Rosado et al.'”
to model the GZ bearing life as a function of applied
load, or inner race contact stress, with varying levels
of compressive residual stress in both races. The bear-
ing operates at a shaft speed of 10,000 r/min with the
outer race temperature of 400 K. At this operating
speed, for the size of this bearing, the hoop stress is
found to be negligible, although this stress is
accounted for in the calculation. Race material for
both races is M50-NiL, while the material for the
balls is silicon nitride. Nominal bearing geometry is
documented in Table 2.

For case hardened materials, such as M50-NiL, a
variation in elastic modulus as a function of depth has
been reported. The modulus is highest at the surface,
and it gradually reduces to the nominal modulus of
the base material as a function of depth. Klecka
et al.>> have measured such an elastic modulus vari-
ation in M50-NiL steel. In order to realistically model
the effect of such elastic modulus variation, a rigorous
analysis of both the contact problem and subsurface
stress field is required. As a first approximation, since
elastic deformation varies inversely as cube root of
the elastic modulus, the current work uses a cube
root average of the elastic modulus over the core
depth. This provides an effective elastic modulus
slightly higher than that of the base material M50.
Very recently, Londhe et al.?® have carried out a
finite element analysis of ball/race contact with vary-
ing elastic modulus in the race material. By matching
the Hertz contact stress for the case hardened material
with that obtained with an equivalent through har-
dened material, they have provided a regression pro-
cedure to compute an effective elastic modulus. The

Bearing bore 40 mm
Bearing OD 80 mm
Number of balls I

Ball diameter 12.70 mm

Pitch diameter 60.25 mm
Contact angle 22°
Outer race curvature factor 0.52

Inner race curvature factor 0.52
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effective modulus so computed is also slightly higher
than that of the base through hardened material, and
it is very much in line with the simplified assumption
stated above. The slightly higher elastic modulus pro-
vides approximately 3% increase in the Hertz contact
pressure, which actually leads to a reduction in fatigue
life. In spite of this reduction in life, Londhe et al.*®
have attributed the generally improved performance
of case hardened materials to significant residual
stress build up in the material as a result of the man-
ufacturing process. Aside from elastic modulus
variation in the core, a more significant change in
elastic modulus is actually as a function of tempera-
ture, when the elastic modulus drops with increasing
temperature. In the range of typical operating tem-
peratures in turbine engine bearings, such a drop in
elastic modulus leads to a notable increase in bearing
fatigue life.> In the present investigation, in addition
to the modulus variation as a function of core depth,
the elastic modulus is also corrected for thermal
effects using the available data for M50 VIMVAR
bearing steel.?’

The test bearing materials, geometry, and operat-
ing conditions are identical to those used by
Rosado et al.'"” in their experimental investigation.

The bearings are not subjected to any mounting fits,
which could generate significant hoop stress. The ana-
Iytical life predictions with the above failure stress
modifications are shown in Figure 2. Experimental
life data for the 40-mm hybrid bearing obtained by
Rosado et al.,'” along with more recent data pub-
lished by Trivedi et al.*® are summarized in Table 3.
In both these data sets, residual stress measurements
are carried out on fresh races; thus, they are Type 1
residual stresses. Since the analytical models predict
basic subsurface life, the actual life measured experi-
mentally must be reduced by applicable life modifica-
tion factors under the experimental operating
conditions. The most commonly used life factors,
after the ISO publication in 1989,* are the STLE rec-
ommended factors,* and the more comprehensive life
modification factors developed by Tallian.*' Rosado
et al.' used the STLE life modification factors,
which include factors for materials, processing
and lubrication, referred to a, and a3 factors in the
ISO standard.?’ The applicable STLE factors are also
listed in Table 3. As shown in Figure 2, the Rosado
et al.'” experimental point falls just above the no resi-
dual stress predictions, although compressive residual
stress is reported to be in the range of 100 to 300 MPa.

2 5 10

Applied Thrust Load /kN

15 20 30 40 50

100,000

10,000

1,000

GZ Ly, Life /Hours

0.10

100 | Compresive Residual Stress /MPa

10 Experimental, Rosado et al (2010)

Experimental, Trivedi et al (2017)

15 2.0 25
Inner Race Contact Stress /GPa

3.0 3.5 4.0

Figure 2. Parametric GZ life predictions for a 40-mm M50-NiL hybrid ball bearing as a function of compressive residual stress and
applied load for a 40-mm hybrid ball bearing operating at 10,000 r/min at 400 K.

GZ: Gupta—Zaretsky.

Table 3. Experimental data for the 40-mm hybrid ball bearing.

Inner race contact Failure Experimental STLE life Estimated
Data set stress (GPa) index life (h) modification factor basic L,g life (h)
Rosado et al."” 3.0 4/10 774 39 19.85
Trivedi et al.?® 35 8/16 4224 38 L1
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However, based on visual examination of the failed
bearings, Rosado et al.'”” have reported delamination
of TiN coating on the cage guidance lands and some
damage to the race surfaces. Although a precise mode of
failure is not included in the published work, it is specu-
lated that the observed damage to race surfaces may
have accelerated failure propagation. Thus, the correl-
ation between model prediction and experimental data
obtained by Rosado et al.'® may not be unreasonable.

Trivedi et al.®® have presented another data set for
the 40-mm hybrid ball bearing. Except for the race
curvature factors, which are modified to 0.53, geometry
of the bearing is identical to that used by Rosado
et al."” The increased race curvature factors produce a
slightly higher contact stress under the operating con-
ditions identical to those used by Rosado et al.'” The
experimental point corresponding to this data set, as
summarized in Table 3, and plotted in Figure 2, falls
right in the range of model predictions corresponding
to the expected range of residual stress. Thus, the model
prediction is in good agreement with experimental data.

Alternatively, the results of Figure 2 may be
replotted in Figure 3 in terms of a life modification
factor defined in equation (11b). It should be noted
that at light applied loads and high levels of compres-
sive residual stress, the bearing life may become infin-
ite. Also, the life modification factor is both residual
stress and applied load dependent.

Failure stress modification due to fatigue
limiting stress

Toannides and Harris*' have proposed infinite bearing
life when applied stress is below a prescribed fatigue

limiting stress. The limiting stress is imposed on the
orthogonal shear stress, used by Lundberg and
Palmgren®* such that the bearing life is infinite
when the maximum orthogonal shear stress due to
applied loading is less than the fatigue limiting
stress. When the applied maximum orthogonal shear
stress is greater than the limiting stress, then the effect-
ive failure stress is reduced by the limiting stress.
When the limiting stress is reduced to zero the pre-
dicted life converges to that obtained by the LP
model. In other words, the LP empirical constant in
the life equation is retained. A few years later, Harris
and McCool* replaced the maximum orthogonal
shear stress with the maximum octahedral shear
stress and applied the limit on the octahedral stress.
This limiting stress is related to the von-Mises stress,
which has been documented for several bearing
materials by Harris and Kotzalas.”> Subsequent to
these limiting stress models, the International
Standards Organization (ISO) has published the ISO
281 standard?? which suggests a limit stress for fatigue
life modeling corresponding to a maximum contact
stress of 1.5 GPa.

Primarily, due to the lack of experimental evi-
dence establishing the existence of a limiting stress in
rolling contact fatigue, life models based on limiting
stress have been quite contentious.>**! Carrying out
actual life tests at light loads, which could possibly
lead to infinite life, is quite difficult and perhaps expen-
sive. Thus, in the present work, with the assumption
that a fatigue limiting stress does exist, the applicable
failure stress is simply modified by a limiting stress and
the impact on life is modeled. The approach is identical
to that used above for the residual and hoop stresses,
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Figure 3. The impact of compressive residual stress in bearing races of a 40-mm M50-NiL hybrid ball bearing operating at

10,000 r/min and 400 K.
GZ: Gupta—Zaretsky.
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except for the implementation of fatigue limit both
the stress and volume terms are modified, since the
life model only applies when the stress is above the
prescribed limiting stress.

Toannides and Harris?! carried out a fairly rigorous
integration of the modified stress function over the
stressed volume. However, the empirical constant
in the life equation is still estimated by matching the
predicted dynamic capacity to the LP value, as the
limiting stress is reduced to zero. Thus, consistent
with the LP development, it may not be unreasonable
to simply implement a constant modified stress func-
tion over a prescribed volume to model the effect of
limiting stress. Also, in order to maintain the flexibil-
ity to add the residual and hoop stresses in the limit-
ing stress model, the orthogonal stress, used by
Lundberg and Palmgren,** is replaced by octahedral
shear stress, as done by Harris and McCool.??
Therefore, implementation of IH model in the present
investigation is carried out in two parts:

e In the LP model, the maximum orthogonal shear
stress is replaced by maximum octahedral shear
stress, and the empirical constant is recalibrated
with available experimental data. Thus, the pre-
dicted life with octahedral based stress is identical
to that obtained by the original orthogonal shear
stress-based model.

e A limiting octahedral stress for the specified bear-
ing material is then imposed to modify both the
effective failure stress and stressed volume. The
limiting stress is related to the von-Mises stress
documented by Harris and Kotzalas.> When the
operating octahedral stress is less than this limiting
stress, the bearing life is infinite.

Thus, the orthogonal shear stress, t,, in LP equa-
tion (2), is replaced by an octahedral shear stress, 7,
which may be defined as

Toet = CIHPH (12a)

where ¢y is the ratio of octahedral shear stress to
contact pressure, as tabulated in Table 1. The failure
stress is then modified by subtracting a fatigue limit-
ing stress t;, which is defined as

o (12b)

where o, is the von-Mises stress for the prescribed
bearing material, as tabulated by Harris and
Kotzalas.”

Since the modified life equation is now based on
octahedral stress, the failure stress modification due to
residual and hoop stress may also be applied. While
the limiting stress effect is applied to all parts of the
life equation, stress modification due to residual and
hoop stresses is only applied to the stress part of the

equation, as done above in the GZ model. Thus,
based on the LP life equation (3), the IH life equation
is written as

T, R A AY
L — (pH é“n; + 3w + 34“/11]) ( H é“n;) (13)

L (PHer) ™

Here, ¢ is introduced as an arbitrary limiting stress
modifier, which could be assigned an arbitrary value.
A value of 1 (one) represents the IH model when the
limiting shear stress corresponds to the von-Mises
stress for the specified bearing material; a value of
0 (zero) removes the limiting stress and reduces the
IH model to LP model with maximum octahedral
shear stress as the critical failure stress. Similar to
the LP and GZ models, the dynamic stress capability,
PrHerr> contains an empirical constant, A4;z, which is
derived by fitting model predictions under no limiting
stress to available experimental life data.

As done in the failure stress modification for the
GZ model, the IH life may also be expressed in terms
of a base IH life, L;z,, with no stress modification, as

U _eu N N |
Lin Lin, pulmr 3pumm 3pulim

2-h

x [1 __v ] ' (14a)
puSIH

: b
- Q’P Z ) (14b)
L, HelH

Note that equation (14b) is identical to the LP
equation (3), except that the failure stress is the max-
imum octahedral stress.

When the residual and hoop stress components are
neglected, equations (14a) and (14b) may be expressed
in terms of a limiting stress life factor, g, as

L = ¥sLim, (152)
Ys = [1 __vu } : (15b)
PuSIH

For parametric evaluation, the model is again
implemented in the bearing dynamics code,
ADORE.*

The five experimental data sets used by Gupta and
Zaretsky® to compute the model constants in the gen-
eralized LP and newly introduced GZ models are also
used to compute the model constant in the TH model.
The contact stresses and failure indices in these five
data sets are reproduced in Table 4. As a first step of
IH model implementation, the orthogonal shear stress
in the LP model is replaced by octahedral shear stress
and the model is fitted to the experimental data to
derive the applicable base constant. This defines the
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Table 4. Experimental life data obtained with a 120 mm angular contact ball bearing.

Data Inner race contact Applicable life Estimated basic
set ID stress (GPa) Failure index modification factor Lo life (h)
Set | 2.35 10/27 6.51 30.1
Set 2 2.35 14/27 6.39 15.67
Set 3 2.36 11726 6.15 25.30
Set 4 2.38 6/26 6.48 33.33
Set 5 1.95 6/30 30.46 50.39

60

50

B Experimental Data B Model Predictions
40

Basic L, Life /Hours

SSD =228

Set 2

Set3
Data Set ID

set 4

Set5

Figure 4. Least-squared regression fit of the IH model predictions to the experimental data sets under no limiting stress. The model
converges to LP predictions with maximum octahedral shear as the failure stress.

Table 5. AISI 52100 ball bearing geometry.

Bearing bore 40 mm Pitch diameter 66.040 mm
Bearing OD 80 mm Contact angle 15°
Number of balls 13 Outer race curvature factor 0.525

Ball diameter 1'1.100 mm Inner race curvature Factor 0.535

base LP model with octahedral shear stress, which is
also the limiting solution for the IH model when the
stress limit is reduced to zero. The model fit is shown
in Figure 4. Note the Sum of squared deviation (SSD)
is also shown in Figure 4. This value indicates the
level of fit between model predictions and experimen-
tal data. Discussion on significance of this value fol-
lows later in the article.

Once the model constant is established via regres-
sion analysis, model predictions with the IH model,
with a prescribed stress limit, may be compared with
the LP and GZ models. For this purpose, another
40-mm ball bearing operating at 10,000r/min is
again used with the operating temperature set to
293K (room temperature). The bearing geometry is

tabulated in Table 5. The material of both races and
the balls is set to AISI 52100 steel in order to obtain a
fair comparison with the original LP model.

Life predictions, as obtained by the various
models, are shown in Figure 5; note that the general-
ized LP and the original LP solutions are identical,
since the bearing material is AISI 52100 bearing steel
at room temperature. Simply to evaluate the role of
limiting stress, the residual and hoop stress compo-
nents are set to zero in these parametric runs.
The limiting stress in the IH model is derived from
the von-Mises stress for AISI 52100 steel as tabulated
by Harris and Kotzalas®®; the stress limit modifier, o,
is 1.0 under this condition. At low stresses, the GZ
predictions are about an order of magnitude higher in
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Figure 5. Comparison of life predictions with the various life models for the 40 mm AISI 52100 ball bearing operating at 10,000 r/min

at room temperature.
LP: Lundberg—Palmgren.
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Figure 6. Parametric life predictions of fatigue limiting stress-based IH life model.

LP: Lundberg—Palmgren.

comparison to the LP model, while the predictions are
lower at high contact stresses. This is due to a higher
stress—life exponent in the GZ model as discussed by
Gupta and Zaretsky.” With the IH model, however,
the life predictions are greatly higher, particularly at
low stresses. Also, the stress—life relation is no longer
linear on a logarithmic scale, as expected from equa-
tion (13).

In order to elaborate on the significance of limiting
stress in life predictions, parametric solutions are
obtained with the IH model with varying limiting

stress, including the ISO 281°? suggested fatigue limit-
ing stress corresponding to a Hertz contact stress of
1.5 GPa. For the AISI 52100 bearing steel, and with a
maximum octahedral to Hertz contact pressure ratio
of 0.275, this corresponds to a limiting stress modifier,
@, of 1.28. In other words, ISO 281 suggests a limiting
stress is 28% higher than that proposed by loannides
and Harris.?' The parametric results of IH model pre-
dictions with varying values of limiting stress modi-
fier, ¢, are shown in Figure 6. Both the predicted lives
at low stress levels and the rate of life increase with
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reducing stress are highest with the ISO standard. As
the stress limit modifier is reduced, the predicted lives,
particularly at low stresses, reduce rapidly and the
stress—life relationship becomes increasingly linear.
When the limiting stress modifier is set to zero, the
relationship becomes linear, and the model converges
to the LP stress—life relation. While the LP model uses
the maximum orthogonal shear stress, and TH model
uses maximum octahedral shear stress, the overall
impact on life with these two formulations is just a
change in scale factor, which is part of the model con-
stant determined by regression analysis of experimen-
tal data. Therefore, the two solutions are essentially
coincident.

In absence of any residual or hoop stress effects,
the solutions of Figure 6 may be presented in terms of
the limiting stress life factor, defined earlier in equa-
tion (15b). This is done in Figure 7. Since the IH
model converges to the LP solutions with no limiting
stress, these solutions may be applied on the currently
used LP model to assess the role of limiting stress on
bearing life. Clearly, the predicted lives with the limit-
ing stress-based models, based on the classical LP
equation via simple failure stress modification, are
orders of magnitude higher than those obtained with
the base LP model. Such a strong dependence of life
on limiting stress makes the applicable limiting stress
very critical in the life models. It may be quite possible
that in the event, a fatigue limiting stress does exist for
rolling contact; then the fundamental subsurface fati-
gue hypothesis formulated by Lundberg and
Palmgren,®* is no longer applicable and based on
experimental support, development of an alternate
fatigue hypothesis may be necessary.

A numerical experiment

Full scale rolling bearing life tests at light loads are
extremely difficult and perhaps quite expensive.
Therefore, it may be difficult to experimentally estab-
lish a fatigue limiting stress in rolling contacts, similar
to the one established in simple bending or torsion.
However, in order to make some assessment of the
significance of limiting stress in life modeling, a
“numerical experiment” is carried out, with the fol-
lowing assumptions:

1. A viable fatigue limiting stress does exist for roll-
ing contacts.

2. Applicable limiting stress is somewhat of an
unknown.

3. Similar to the classical subsurface fatigue, the fun-
damental hypothesis in the fatigue limiting stress-
based model still consists of stress—volume integra-
tion, except that the applicable failure stress is
reduced by the limiting stress.

4. Like any other model, life predictions with a pre-
scribed limiting stress model must agree reason-
ably well with experimental life data under a
stress above the limiting stress when the bearings
do fail.

In view of assumptions (1) and (2), the life model is
formulated in terms of a variable limiting stress, as
already done above in terms of the limiting stress
modifier, ¢. In accordance with assumption (3), the
model is based on the well-established LP model,
except that the applicable failure stress is reduced by
the limiting stress. This is also already done in the
formulation presented above. Finally, conforming to
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Figure 7. Estimated life factors for fatigue limiting stress as a function of the limiting stress and the applied load for the 40 mm AlSI

52100 ball bearing operating at 10,000 r/min at room temperature.
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assumption (4), for a given value of ¢, a least-squared
deviation analysis of model predictions against avail-
able experimental data is carried out to estimate the
applicable empirical model constant. Such a process
makes the model constant dependent on prescribed
fatigue limiting stress, but model predictions agree
reasonably well with experimental life data under
stresses greater than the fatigue limiting stress when
the bearings do fail.

Using the above approach, IH model correlations,
at a limiting stress corresponding to the von-Mises
stress of the material (p=1), with the five

experimental data sets, documented in Table 4, are
shown in Figure 8. The figure also documents the min-
imum value SSD (sum of squared deviation between
model predictions and experimental data). Comparing
this SSD value with the corresponding value at no
limiting stress (documented earlier in Figure 4) reveals
that the model fit is better at no limiting stress.
Again, using the 40-mm bearing with AISI 52100
bearing steel, comparisons of life predictions with the
above fatigue limiting stress model are compared with
the LP solutions in Figure 9. Although the model pre-
dictions are now similar around the experimental

IH Model Fit to Experimental Data

2
Limiting Octahedral Shear Stress = g von-Mises Stress

60
50 B Experimental Data B Model Predictions
@ SSD =362
3 40
L
~
&
—
7
=
wv
m
@

Set 1 Set 2 Set 3 set 4 Set 5
Data Set ID

Figure 8. IH model correlation with experimental data at the fatigue limiting octahedral shear stress corresponding to the von-Mises
stress of the material.
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Figure 9. Comparison of IH and LP life predictions, for the 40 mm AISI 52100 ball bearing operating at 10,000 at room temperature,
with IH model constant obtained by independent correlation with experimental life data.
IH: loannides and Harris; LP: Lundberg—Palmgren.
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Figure 10. Parametric life predictions for the 40 mm AISI 52100 ball bearing, operating at 10,000 r/min at room temperature with

varying levels of fatigue limiting stress.
LP: Lundberg—Palmgren.

stress points, the TH lives are substantially higher at
low stress levels and lower at high stresses in compari-
son to the LP predictions.

The above analysis is repeated at varying values of
limiting stress, including the ISO 281 recommenda-
tion, and life prediction is plotted as a function of
applied load on the bearing. Again the 40-mm bearing
with AISI 52100 bearing steel is used to produce the
results shown in Figure 10. As the limiting stress
reduces to zero, the model converges to the LP solu-
tion. Note that all solutions intersect at a stress point
between 2 and 2.5 GPa. This happens to be an effect-
ive stress for the five experimental data sets, docu-
mented earlier in Table 4. If the experimental data
were available at a wider range of applied contact
stress, then this point of intersection may vary.
Interestingly, these results are qualitatively identical
to the results published by Ioannides and Harris®'
for rotating beams.

Finally, to evaluate the model fit to experimental
data and determine an optimum value of ¢, the com-
puted SSD with a model with limiting stress modifier,
@, relative to the SSD obtained with a model with no
limiting stress is plotted as a function of the prescribed
limiting stress, or the limiting stress modifier in
Figure 11. Note that this SSD ratio may also be inter-
preted as a ratio of more commonly used RMS devi-
ation. As stated earlier, the factors of 1.28 and 1,
respectively, correspond to the ISO 281 standard
and the TH model with limiting stress derived from
von-Mises stress, while a factor of zero represents
no limiting stress. It is interesting to see that the rela-
tive SSD or RMS deviation monotonically increases
with increasing limiting stress with a minimum value
at no limiting stress. This suggests that the model fit is
best with no fatigue limiting stress, or ¢ =0.

Although this is just a numerical experiment, it does
indicate that simple failure stress modification in the
classical subsurface fatigue life model may not be a
good option for the development of life models based
on fatigue limiting stress. However, this does not
imply that that a fatigue stress limit does not exist.
Perhaps, more extended experimental effort is neces-
sary to establish a limiting stress and postulate a
model hypothesis different from the simple stress—
volume integral of classical subsurface fatigue life
models.

Discussion

It is clear that the simple failure stress modification
in fatigue life models is well suited for modeling
the effect of residual stress in bearing races. Life
predictions with modified failure stress are in good
agreement with the available experimental life data.
Modeling the role of a fatigue limiting stress, how-
ever, appears to be much more complicated than a
simple modification of critical failure stress.
Primarily due to practical limitations, full scale bear-
ing life tests are invariably carried out at stresses much
greater than the anticipated fatigue limiting stress.
Thus, it is difficult to establish a fatigue limiting
stress on the basis of full scale bearing life tests; like-
wise, it is equally difficult to rule out any existence of a
limiting stress. In the event a limiting stress does exist,
its implementation in life prediction models at stresses
greater than the limiting stress requires a much more
rigorous development of failure initiation and propa-
gation than the simple stress function integration over
a stressed volume as done in the LP model. The
“numerical experiment” carried out in the present
investigation simply modifies the failure stress, in an
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Figure 11. SSD of model predictions from experimental data for life model with fatigue limiting stress modifier, ¢, relative to the

SSD obtained with a model with no limiting stress.

LP-type model, as originally done by loannides and
Harris,?! to obtain parametric life prediction as a
function of the prescribed limiting stress at operating
stresses greater than the limiting stress. A regression
analysis of predicted lives against available experi-
mental life data is then carried out with the hopes of
estimating an optimum limiting stress. As presented
above, the results of such a regression analysis show a
monotonically increasing deviation between model
predictions and experimental data as a function of
limiting stress with the best model fit when the limit-
ing stress is zero. Clearly, this is just a numerical exer-
cise and by no means does it rule out an existence of a
fatigue limit. Besides, the experimental data are lim-
ited and obtained over a narrow range of operating
stress. However, the observation does indicate that
simple failure stress modification in LP-type life
models may not be realistic to implement a fatigue
limiting stress for bearing life prediction at stresses
greater than the limiting stress.

Unlike the well-established fatigue limiting stress in
mechanical components subject to bending and/or tor-
sion, existence of a fatigue limiting stress in rolling con-
tacts has been a controversial subject. From an early
historic perspective of rolling bearing development,
Tallian*® endorsed the fact that irrespective
of operating conditions, rolling bearings will always
be subjected to fatigue. With the development of
more advanced bearing materials, Lamagnere et al.>*
have outlined fracture mechanics stages of the fatigue
process, which could provide insight into a possible
limiting stress below which the fatigue process could
be arrested. Shimizu®> and Zaretsky,*® on the other
hand, have maintained the existence of the fatigue pro-
cess at all stress levels. Takemura et al.>” have endorsed
a fatigue limiting applied contact stress in the range of
1.1 to 1.7 GPa, depending on the structural cleanliness

of the material. The ISO suggested limit of 1.5 GPa®
certainly falls in this range. A more recent review of the
fatigue life models is presented by Sadeghi et al.*® A
fracture mechanics concept in which the growth of
micro cracks leading to fatigue failures could be
arrested has been presented by Donzella and
Petrogalli.** More recently, Lewis and Tomkins,*
along with extensive review of the recent developments
related to fatigue limiting stress, have presented a fairly
rigorous fracture mechanics approach to rolling bear-
ing fatigue. Fatigue life is segmented into three parts:
subsurface crack initiation, crack growth, and final
propagation to form a spall. It is postulated that
micro cracks initiate at one or both ends of a non-metal-
lic inclusion; the cracks grow parallel to the surface
forming a “butterfly” pattern, and eventually propa-
gate to the surface resulting in a failure. A possible
limiting stress, below which no crack initiation may
occur, is related to size of the inclusion. A more conser-
vative limiting stress below which crack growth could
be arrested is also proposed. Very recently, with due
recognition of the fact that experimental determination
of applicable fatigue limiting stress may be impractical
and perhaps expensive, Allison and Pandkar*' under-
took a finite element analysis to model the role of non-
metallic inclusions in the material matrix in defining a
possible limiting stress. It is postulated that these inclu-
sions act as stress risers, accumulate micro-plastic
strain, and eventually lead to micro-crack initiation,
and eventual bearing failure. A fatigue limiting stress
is then interpreted as a stress below which no local
yielding may occur. In addition to the limiting stress
dependence on inclusion size and properties, as pointed
out by Lewis and Tomkins,** stress concentration
resulting from debonded inclusions and thermal
dependence of elastic modulus are identified as the
key factors which define a limiting stress.
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In absence of any limiting stress, as demonstrated
in Figure 5, bearing life predictions by the current LP
and GZ life models, respectively, increase by factors
of about 20 and 60 when the applied contact stress
reduces from 2 GPa, which is a typical lower bound
for current bearing tests, to the ISO proposed limiting
stress of 1.5GPa. Such an observation implies that
just to validate the current models at 1.5 GPa, the
test duration, a current upper bound on which is pres-
ently about 5000 hours, will have to be increased far
beyond any practical limits. Thus, both the accept-
ance and rejection of a possible fatigue limiting
stress are beyond the practical limitations of full
scale bearing life tests. While there has been signifi-
cant development in fracture mechanics approaches
to understanding the origination and propagation of
fatigue cracks as a function of material structure,
computational models are still restricted to
Weibull'? and Lundberg and Palmgren®* type for-
mulations where life is defined as a function of a
stress function integration over the stressed volume
with a Weibull-type statistical variance. The effect
of material structure and operating conditions, such
as lubrication, are implemented in terms of life modi-
fication factors® ! applied over the computed basic
life. With significant advancement in materials used
for rolling bearing applications, the next step is to
formulate new life models which not only implement
any possible fatigue limiting stress but quantify the
micro crack initiation, growth and propagation pro-
cesses, as outlined by Lewis and Tomkins,*’ to com-
pute life of the bearing when the applied contact
stress is greater than the possible limiting stress. It
should be noted that while dynamic stresses in the
bearing races may overcome any stresses, which lead
to arrest of crack growth, and significantly reduce fati-
gue life, compressive residual stresses may significantly
retard or completely arrest crack growth and propaga-
tion, and thereby provide infinite life. It is therefore
necessary to superimpose these stresses on the subsur-
face stress field generated by the applied loading.
Perhaps, the finite element formulation of Allison and
Pandkar*' may be extended to provide required super-
imposition of stresses. Life predictions obtained with
such sophisticated models may certainly be evaluated
against experimental life data obtained by carrying out
full scale bearing life tests, under the current experi-
mental framework.

Summary

The current development presents an approach for
failure stress modification in the generalized subsur-
face rolling contact fatigue life models. In particular,
the following has been accomplished:

1. A procedure has been developed to modify the
failure stress in the generalized models to model
the effect of residual and hoop stresses. Parametric

evaluation of the Gupta-Zaretsky (GZ) model dem-
onstrates significant life enhancement as a result of
compressive residual stress. The equivalent life
modification factor is both residual stress and
applied load dependent. At light loads, even rela-
tively low levels of compressive residual stress may
contribute to significant increase in fatigue life. The
enhanced model also leads to infinite life when the
maximum subsurface shear stress resulting from
applied load on the bearing is less than that pro-
duced by the compressive residual stress.

Life predictions obtained by the enhanced model
are in good agreement with available experimental
data for a 40-mm angular contact ball bearing
with M50-NiL races and silicon nitride balls.

. The failure stress modification is also applied to

implement a fatigue limiting stress as done by
Ioannides and Harris (IH). The IH model, as
implemented in the present work, is based on the
Lundberg-Palmgren (LP) model with the orthog-
onal shear stress replaced by octahedral shear
stress, a limiting value for which is related to the
von-Mises stress of the bearing material. The
empirical model constant is derived by least-
squared regression of model predictions, against
available experimental life data. A limiting stress
is then applied to model life over a range of
applied contact stress. Parametric results are
obtained with varying levels of limiting stress,
including the recommendation in ISO 281. While
the model converges to LP predictions with no
limiting stress, the predicted lives are orders of
magnitude higher at light loads.

. As an alternate implementation of fatigue limiting

stress, the model constant at any prescribed limiting
stress is independently computed by regression
against available experimental life data. Parametric
life predictions are then made as a function of
applied load or contact stress in the bearing. While
the solutions, with no limiting stress, again converge
to LP predictions, the limiting stress-based models
show very large increase in life at light loads, while
the predicted life is greatly reduced at high loads.
The increase in predicted life is largest with the
ISO 281 suggested limiting stress. These results are
qualitatively similar to those published by Ioannides
and Harris for rotating beams.

Evaluation of the computed sum of squared devi-
ation between model predictions and experimental
life data as a function of limiting stress suggests that
the fit is best at no fatigue limiting stress. This leads
to the conclusion that the simple failure stress modi-
fication in current life models, based on the subsur-
face fatigue hypothesis of Lundberg and Palmgren,
may not be appropriate to model life enhancement
as a result of any fatigue limiting stress. Perhaps,
more advanced fracture mechanics-based life model
formulations are necessary to model the role of a
possible fatigue limiting stress.
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Appendix

Notation

a major contact half width (m)

a* dimensionless major contact half width
for point contact

Arp empirical constant in LP dynamic stress
capacity equation (units depend on
exponent ¢ and /4, default
value = 1.4599 x 10° N/m'**%)

Az empirical constant in GZ dynamic
stress capacity equation (units depend
on exponent ¢, default
value = 6.4229 x 10* N/m'""")

Arm empirical constant in IH dynamic stress
capacity equation (units depend on
exponent ¢ and 4, default
value = 1.5524 x 10° N/m'*%)

b minor contact half width (m)

b* dimensionless minor contact half width

for point contact
critical failure stress exponent (default
value =31/3)
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contact track diameter on race (m)
rolling element diameter (m)

modulus of elasticity (Pa)

effective elastic modulus parameter for
contacting surfaces (Pa)

geometric parameter in dynamic stress
capacity equation (units depend on
exponent ¢ and h)

proportionality constant in fundamen-
tal life equation (units depend on
exponent ¢ and h)

critical failure stress depth exponent
(default value =7/3)

fatigue life (h)

Weibull slope (default value =10/9)
maximum Hertz contact stress (Pa)
dynamic stress capacity (Pa)
cumulative survival probability
number of stress cycles per revolution
of rotating race

stressed volume with maximum ortho-
gonal shear stress (m®)

stressed volume with maximum shear
stress (m°)

ratio of critical failure stress to maxi-
mum Hertz contact stress

ratio of effective contact width to major
contact half width

model constant

material parameter (ratio of E’ to
Es>100)

curvature sum of contacting surfaces
(1/m)

residual stress (Pa)

hoop stress (Pa)

von-Mises stress (Pa)

maximum orthogonal shear stress (Pa)
maximum shear stress (Pa)

equivalent maximum shear stress due to
residual and hoop stresses (Pa)
limiting shear stress (Pa)

maximum octahedral shear stress (Pa)
Poisson’s ratio

fatigue limiting stress modifier
dynamic stress capacity adjustment
factor

ratio of depth of critical failure stress to
contact minor half width

residual stress life factor

fatigue limiting stress life factor

rolling element angular velocity (rad/s)
Rolling element orbital velocity (rad/s)
race angular velocity (rad/s)



