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Generalized formulations for dynamic capacity and life of

ball bearings, based on the models introduced by Lundberg

and Palmgren and Zaretsky, have been developed and

implemented in the bearing dynamics computer code

ADORE. Unlike the original Lundberg-Palmgren dynamic

capacity equation, where the elastic properties are part of the

life constant, the generalized formulations permit variation of

elastic properties of the interacting materials. The newly

updated Lundberg-Palmgren model allows prediction of life

as a function of elastic properties. For elastic properties

similar to those of AISI 52100 bearing steel, both the original

and updated Lundberg-Palmgren models provide identical

results. A comparison between the Lundberg-Palmgren and

the Zaretsky models shows that at relatively light loads the

Zaretsky model predicts a much higher life than the

Lundberg-Palmgren model. As the load increases, the

Zaretsky model provides a much faster drop-off in life. This is

because the Zaretsky model is much more sensitive to load

than the Lundberg-Palmgren model. The generalized

implementation, where all model parameters can be varied,

provides an effective tool for future model validation and

enhancement in bearing life prediction capabilities.
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INTRODUCTION

For over a century, rolling element fatigue has been the crite-

rion for determining the life of rolling-element bearings. Classi-

cal rolling-element fatigue is stress or load cyclic dependent,

beginning as a crack at a depth below the race or rolling-element

surface. The crack propagates into a crack network that reaches

the contacting surface to form a spall limited in area and depth

of penetration (Moyer and Zaretsky (1)). This failure mode can

be classified as high-cycle fatigue where most of the bearing life

is related to crack initiation with a relatively short time related

to crack propagation. Rolling-element fatigue is extremely vari-

able but statistically predictable, depending on the steel type,

steel processing, heat treatment, bearing manufacturing and

type, lubricant used, and operating conditions (Moyer and Zaret-

sky (1)). Sadeghi, et al. (2) provide an excellent review of this

failure mode.

In 1924, A. Palmgren (3) began and later together with G.

Lundberg in 1947 and 1952 (Lundberg and Palmgren (4), (5)),

developed what is now referred to as the Lundberg-Palmgren

model for rolling bearing life prediction. The Lundberg-Palmg-

ren analysis is based on the Weibull fracture strength and life

models (Weibull (6)–(10)) and classical rolling-element fatigue

(Zaretsky (11)). In 1953, the Lundberg-Palmgren life model was

adopted as the rolling bearing life prediction standard by ANSI/

ABMA (12), (13) and later by ISO (14), (15). It is currently the

basis for all bearing life prediction worldwide.

In 1952, A. Burton Jones (16) was the first person to consider

the effect of centrifugal loading on the life of angular-contact

ball bearings. His analysis modified the bearing life analysis of

Lundberg and Palmgren. Subsequently, in 1959, Jones (17) pub-

lished his method for determining the kinematics of a ball and

sliding friction in a high-speed, angular-contact ball bearing. Fol-

lowing this analysis, in 1960, Jones (18) published a completely

general solution for both ball and roller bearing kinematics,

loading, and life. For the first time, a bearing analysis incorpo-

rated elastic deflection of the bearing shaft and supporting struc-

ture as well as centrifugal and gyroscopic loading of the rolling

elements under combined loading and high-speed operation

(Jones (19)). The solution, which was accomplished numerically

by iterative techniques, was programmed by Jones for an IBM-

704 digital computer. This was the first rolling-element bearing

computer code and a major technical achievement.

The Lundberg-Palmgren (4), (5) bearing life analysis as

well as that of Jones (19) was benchmarked to a pre-1940

rolling bearing life database. With advancements in materials,

steel processing, manufacturing techniques, and lubrication

beginning in the early 1950s, rolling bearing fatigue life has

significantly increased. Fatigue life predictions from the

Lundberg-Palmgren model began to significantly underesti-

mate bearing life (Zaretsky (20)).
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In 1987, W. J. Anderson (21) discussed the limitations of the

Lundberg-Palmgren life model. He stated that

in the decades since its development a number of
shortcomings have become apparent. These shortcom-
ings, which manifest themselves as discrepancies
between predicted and actual bearing behavior, are
partly due to limitations of the original model in
accounting for all relevant phenomena and partly due
to continuously advancing bearing technology.

These limitations in the Lundberg-Palmgren life model have

stimulated research on more comprehensive life models such as

those of Ioannides and Harris (22) and Zaretsky (23), (24). The

limitations have also resulted in the introduction of life factors

that attempt to correct for material and lubrication effects in the

Lundberg-Palmgren life model (Bamberger, et al. (25), Zaretsky

(26); Tallian (27)).

Ioannides and Harris (22) modified the Lundberg-Palmgren

model by introducing a shearing stress fatigue limit, below which

the bearing life is assumed to be infinite. Thus, a limiting shear

stress was subtracted from the base shear stress before comput-

ing the life (Zaretsky (11)).

Zaretsky (11), (23), (24) made some fundamental changes to

the Lundberg-Palmgren model. First, the Weibull equation was

rewritten to make the shear-stress exponent independent of the

Weibull slope. Second, the maximum shearing stress, rather than

the orthogonal shearing stress, was chosen as the critical shearing

stress. Third, the life dependence on the depth of the critical

shear stress was eliminated. Awaiting further experimental vali-

dation of these fundamental modifications, the Lundberg-Palmg-

ren model has continued to be the dominant life prediction

model, and life correction factors have been developed to reflect

the behavior of improved materials in varied operating environ-

ments (Zaretsky (26); Tallian (27)).

As the modern bearing steels and manufacturing techni-

ques have advanced, bearing life has increased several-fold in

comparison to that achievable in the 1940s. However,

demands on operating environments in terms of speed, load,

and temperatures have become significantly more adverse.

This has resulted in renewed interest in fatigue life modeling.

Currently, the three most referenced fatigue models are

Lundberg-Palmgren (4), (5), Ioannides-Harris (22), and

Zaretsky (11), (23), (24). In the Lundberg-Palmgren model,

as originally developed, certain material properties and sur-

vival statistics are embedded in the model constants. In addi-

tion, simplifying assumptions were made to implement the

elastic contact solutions. Thus, the life factor approach has

been the only viable approach to update the life prediction

from this model, as it is currently used.

The shear stress fatigue limit concept proposed by Ioannides

and Harris (22) has been a very controversial subject. Several

researchers (Palmgren (28); Shimizu (29); Zaretsky (30)) have

demonstrated that a realistic fatigue limit on rolling bearing

NOMENCLATURE

A D Original Lundberg-Palmgren constant in load capacity

equation, N/m1.80 (lbf/in1.80)

ALP D Updated Lundberg-Palmgren constant in load capacity

equation, N/m1.80 (lbf/in1.80)

AZ D Zaretsky constant in load capacity equation, N/m1.332

(lbf/in1.332)

a D Semimajor width of Hertzian contact area perpendicular

to direction of rolling, m (in)

b D Semiminor width of Hertzian contact area in direction of

rolling, m (in)

c D Shearing stress-life exponent

D D Diameter of rolling element, m (in)

d D Diameter of rolling element running track, m (in)

dm D Pitch diameter, m (in)

f D Raceway curvature factor: ratio of groove radius to ball

diameter

h D Exponent for depth to critical shearing stress

K D Empirical proportionality constant in fundamental Eq.

[6]

Li D Individual contact life, millions of rotating race

revolutions

LR D Life of rotating race life, millions of rotating race

revolutions

LS D Life of stationary race, millions of rotating race

revolutions

L10 D 10% Bearing life: life at which 90% of a population sur-

vives, millions of rotating race revolutions

m D Weibull slope or modulus

N D Life, number of stress cycles

n D Number of rolling-elements

pH D Maximum Hertz stress, Pa (lbf/in2)

Q D Normal force (load) between rolling-element and race-

way, N (lbf)

Qc D Dynamic radial load capacity, N (lb)

S D Probability of survival

u D Contact frequency of rolling element per revolution of

bearing race

Vo D Stressed volume, m3 (in3)

z D Distance below surface to critical shearing stress, m (in.)

a D Contact angle

g D D cos(a)/dm
z D Ratio of critical shear stress to maximum Hertz stress,

t/pH
u_ D Rolling element orbital velocity

λE D Elastic property ratio

ξ D Nondimensional depth to critical shearing stress, z/b

t D Critical shearing stress, Pa (lbf/in2)

V D Angular velocity of bearing race

Subscripts

i D Designates race (1 D inner race, 2 D outer race)

j D Designates rolling element number (from 1 to n)

m D Designates maximum sheering stress or depth of this stress

o D Designates orthogonal sheering stress or depth of this stress
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materials does not really exist. Thus, an input shear stress fatigue

limit in the Ioannides and Harris (22) model may lack physical

significance.

The Zaretsky model attempts to physically modify the fatigue

process as a whole. Because the actual data used to develop the

Lundberg-Palmgren model are not available in the open litera-

ture to revisit the model at a fundamental level, it is essential to

reformulate the Lundberg-Palmgren life equation in a more gen-

eralized fashion in order to establish the physical significance of

each element of the model. Likewise, the Zaretsky model

required development so that it can be applied to practical

bearings.

Based upon the above discussion, the objectives of the investi-

gation reported were to (1) develop generalized expressions for

both the Lundberg-Palmgren and the Zaretsky models; (2)

implement the models in a bearing performance simulation com-

puter code; (3) carry out a parametric model evaluation to derive

the model constants from available experimental data; and (4)

compare the model predictions over the operating conditions as

a function of key model elements.

In order to achieve these objectives, the bearing dynamics

computer code ADORE (Gupta (31)), which is based on the

bearing dynamic analysis of Jones (19), was used as a baseline

code. Published experimental data for a jet engine main-shaft

bearing (Bamberger, et al. (32); Zaretsky and Bamberger (33);

Bamberger, et al. (34), (35)) were used to derive the constants in

the life equation. Model predictions were then compared with

another set of high-speed turbine engine bearing life data (Bam-

berger, et al. (34)). The groundwork developed in this investiga-

tion is intended to provide a starting point for future model

development and validation as experimental data on newer

materials become available.

Lundberg-Palmgren Model

Based on very simple observations, where mechanical failures

were caused by some functions of applied stress and the stressed

volume, Weibull (6), (7) introduced the Weibull distribution

function for strength and life analysis, which is presently very

commonly used in a wide range of applications. In very general

terms, the distribution has three parameters, a location parame-

ter, a scaling factor, and a shape parameter. The location param-

eter defines a base time with respect to which life may be

measured; the scaling factor is a reference life at a defined sur-

vival probability, relative to which reliability at any arbitrary sur-

vival probability may be measured; and the shape parameter

essentially defines the shape of the distribution, more commonly

known as the Weibull slope. The statistical distribution, of

course, does not define any functions of stress or the volume

stressed. Following this fundamental development, Weibull (8),

(9) applied this distribution to fatigue and other types of failures.

Based on this work, Lundberg and Palmgren (4), (5) applied the

Weibull distribution to rolling bearing failures.

After a statistical analysis of a large amount of experimental

bearing life data, it was postulated that in addition to subsurface

shearing stress and the stressed volume, as suggested by Weibull,

rolling-element fatigue was dependent on the depth at which the

fracture is initiated. For this analysis, the location parameter was

set to zero and the characteristic life was determined with 90%

survival probability, commonly known as L10 life. Thus, based

on a two-parameter Weibull distribution, bearing life,N, in stress

cycles, with a probability S, was written as a product of an empir-

ical function of the maximum subsurface orthogonal shear stress,

to, depth below the surface, zo, at which the maximum orthogo-

nal shear stress occurs, and the volume, Vo, of the material

stressed:

ln
1

S
/ tcoN

mz¡ h
o Voln

1

0:90
: [1]

Here c, m, and h, are empirical exponents determined by fit-

ting experimental data to the model. The factor ln
1

0:90
results

from the fact that life at arbitrary survival probability, S, is nor-

malized to 90% probability of survival.

Consider a concentrated (Hertzian) contact between two elas-

tic bodies, with prescribed geometries and material properties,

subjected to an applied load Q. For a generalized three-dimen-

sional contact, Harris and Kotzalas (36) have documented the

elastic solutions in terms of contact half widths a and b, normal

to and along the rolling directions, respectively; the Hertzian

contact stress, pH; and the subsurface shear stress distribution as

a function of depth below the surface. The relation between the

maximum orthogonal shear stress, to, and the depth, zo, at which

it occurs is illustrated in Fig. 1 as a function of the ratio of the

contact half-widths.

For most ball bearings, the ratio of the semiminor axis b of the

Hertzian contact ellipse to the semimajor axis a is approximately

0.15 (b/a � 0.15). See Fig. 1. Thus,

2to
pH

� 0:497 � 0:5 [2a]

zo

b
� 0:492 � 0:5: [2b]

Although Lundberg and Palmgren (1), (4) used the orthogo-

nal shear stress, to, it may be convenient to generalize the model

in terms of any shear stress and the depth at which it occurs.

Thus, in Eq. [1] to and zo may be simply replaced by t and z.

Fig. 1—Normalized orthogonal shearing stress and its depth below the

Hertzian contacting surface for point and line contact.

Ball Bearing Dynamic Capacity and Life 1041
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Equation [2] may be expressed in general terms as

tD z pH and zD ξb; [3]

where the ratio of critical shear stress to maximum Hertz stress, z

D 0.25, and the nondimensional depth to the critical shearing

stress, ξ D 0.50, for the Lundberg-Palmgren model.

Now if the raceway life, L, is expressed in terms of millions of

revolutions, while each contact exerts u stress cycles per revolu-

tion, then

N D uL£ 106: [4]

In addition, if d is the diameter of the rolling element track on

the raceway, then for point contact, the volume of material

stressed is expressed as (Lundberg and Palmgren (4))

V D azpd; [5]

where a is the contact half-width normal to the rolling direction,

and z is the depth at which the failure originates, as defined

earlier.

Thus, after combining Eqs. [3] to [5] and introducing a propor-

tionality constant, K, Eq. [1] may be rearranged to express race-

way life resulting from a single contact as

1

L
D K zpHð Þcpξabd ξbð Þ¡ h

ln 1
S
=ln 1

0:90

" #1=m
u; [6a]

where the constant 106m is absorbed in the proportionality con-

stant K. Additionally, depending on computational preference,

the constant term, ln 1
0:90, may either be absorbed in the constant

or consistent with ANSI/ABMA (12), (13) and ISO (14) stand-

ards a reliability factor may be expressed as

a1 D lnS=ln0:90ð Þ1=m [6b]

and Eq. [6a] may be reduced to

1

L
D K zpHð Þcpξabd ξbð Þ¡ h
h i1=m u

a1
: [6c]

Equation [6a] or [6c] thus represents the generalized form of

the Lundberg-Palmgren life equation, applicable to both point

and line contacts. In the event that the survival probability,

SD 0:90, then of course Eqs. [6a] and [6c] will be identical and

the reliability factor in Eq. [6b] will be one. Note that the Hert-

zian contact stress, pH, and the contact dimensions a and b are

related to the applied contact load, geometry of the interacting

surfaces, and applicable material properties. Thus, specialized

versions of Eq. [6a] or [6c] for point and line contact configura-

tions may be developed.

Based on the Hertzian elastic point contact solution (Harris

and Kotzalas (36)) as applicable to ball bearings, the relation-

ships between the applied contact load, Q, and the contact

parameters contained in Eq. [6] may be written as

pH D 3Q

2pab
[7a]

aD a�
3

2E0
X ​ ​

r

 !1=3

Q1=3 and bD b�
3

2E0
X ​ ​

r

 !1=3

Q1=3

[7b]

1

E
0 D 1¡ y21

E1
C 1¡ y22

E2
; [7c]

where
P

r is a summation of the principal curvatures of the two

interacting surfaces, E1;y1;E2;y2 are respectively the elastic

modulus and Poisson’s ratio of the two surfaces, and a� and b�

are functions of elliptical integrals corresponding to the ratio of

the contact half-widths, a and b.

Equations [7] may be substituted into Eq. [6] to obtain a life–

load relationship, which can be inverted to compute a load,

which will sustain 1 million rotating ring revolutions of life. This

load is defined as the dynamic load capacity of a bearing compo-

nent. In the original Lundberg and Palmgren formulation (Lund-

berg and Palmgren (4), (5)), E0 is considered as a constant,

corresponding to elastic properties of AISI 52100 bearing steel,

and it is included in the proportionality constant, K, in Eq. [6]. In

order to permit elastic properties variation in the updated Lund-

berg-Palmgren relation, developed herein, it is convenient to

define an elastic property ratio

λE D 1=E
0

1=E0
o

; [8]

where E
0
o corresponds to the elastic properties of AISI 52100

steel.

Substitution of Eqs. [7a]–[7c] and [8] into Eq. [6] provides a

life equation in terms of bearing geometry, applied loads, speeds,

and applicable material properties. The proportionality constant,

K, is determined by correlating the model predictions with

experimental data. Though Eq. [6a] or [6c] can be readily used

to compute bearing life, it is often customary to compute a load

under which the bearing could sustain a life of 1 million revolu-

tions with a given probability. This load is defined as the dynamic

capacity of the bearing. Thus, after substituting Eqs. [7] and [8],

Eq. [6a] can be inverted to provide the following generalized

expression for load capacity for ball bearings:

QcLP DALP kck
1¡ c
a k1¡ h¡ c

b d
� � ¡ 3

c¡ hC 2u
¡ 3m

c¡ hC 2; [9]

where the various constants are

ka D a�
3λE
2
P

r

� �1=3

[10a]

kb D b�
3λE

2
P

r

� �1=3

[10b]
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kc D 3z

2p

� �c 2pξ1¡ h

ln 1
S

 !
[10c]

and

ALP D K

E
2¡ h¡ 2c

3
o

 !¡ 3
2C c¡ h

: [10d]

Again kc in Eq. [10c] is a constant, because the survival proba-

bility, S, for the L10 life is 0.90, and z and ξ corresponding to the

magnitude and depth of maximum orthogonal subsurface shear

stress are, respectively, 0.25 and 0.50 for the Lundberg-Palmgren

model. Thus, kc can be included in the proportionality constant.

However, kc is left here as a separate term in the generalized

expression (Eq. [10c]) in the event that it is desired to change

any of these parameters. Also note that the constant ln 1
0:90 has

been absorbed in the constant K in Eq. [10d]. The constant ALPis

the life constant, which has to be determined by fitting experi-

mental data to the model.

With prescribed race angular velocities for outer and inner

races as V1 and V2, respectively, if the rolling element orbital

velocity is _u, then the contact frequency per revolution of faster

of the two races is

ui D j u_ ¡Vij
V2

iD 1; 2 and V2 >V1 [11a]

ui D j u_ ¡Vij
V1

iD 1; 2 and V1 >V2: [11b]

Note that in the entire generalized formulation above, life is

modeled at each individual contact. For life of the entire bearing

these lives are appropriately summed over the total number of

rolling elements as discussed later in the article. Thus, though

the above contact frequency is for an individual contact the total

number of rolling elements does enter in the calculation while

estimating life of the entire bearing. In commonly used simplified

expressions where all rolling elements are assumed to operate

with some effective load, the expression for contact frequency

includes the number of rolling elements and the summation, as

discussed later in the article, is eliminated.

The contact parameters in Eq. [9] are readily available in

rolling-element bearing computer codes. As a result, implemen-

tation of Eq. [9] is straightforward. The load capacity QcLP is

dimensional. The resultant units of the constant ALP will depend

on the values of exponents c and h. From Lundberg and Palmg-

ren, with the values of 31/3 (10.33) and 7/3 for c and h, respec-

tively, the units reduce to (Force/Length)1.80.

While developing the original model in the 1940s, Lundberg

and Palmgren (1), (4)made certain simplifications in relating the

bearing geometry and material properties to compute the elastic

contact solutions. In addition, they assumed the materials to be

air-melt AISI 52100 bearing steel and the values of the expo-

nents c, h, andm were set to 31/3, 7/3, and 10/9, respectively. The

result is the following dynamic capacity equation for a point con-

tact in ball bearings with a survival probability of 90% (Harris

and Kotzalas, (36)):

Qc DA
2f

2f ¡ 1

� �0:41

1� gð Þ1:39 D

dm

� �0:30

D1:8u¡ 1=3 [12a]

gD D cosa

dm
; [12b]

where the upper sign refers to the inner race and the lower sign

denotes the outer race contact.

The variables D, dm, a, f, and u are, respectively, the ball

diameter, pitch diameter, contact angle, race curvature factor,

and the number of stress cycles exerted by a single rolling ele-

ment on the raceway per revolution of the bearing. After corre-

lating Eq. [12a] with experimental data available at the time,

Lundberg and Palmgren proposed a value of 2.464 £ 107 N/m1.8

(7,450 lbf/in1.8) for the empirical constant A. However, the data

used to perform the correlation are not available in the open

literature.

Equation [12a] does not have any input for the elastic proper-

ties of the materials, because they are included in the constant A.

However, if the value of contact angle is set to that existing

under the applied loads, the effects of changes in overall bearing

deformation under the applied loads, speeds, and temperatures

will be accounted for.

Due to its simplicity, Eq. [12a] has been used extensively over

many decades. With the advancing materials technology, the

validity of this simple equation has increasingly been in question.

Because computerized analysis of rolling contacts is readily

available in modern models for rolling bearings, Eq. [9] may

implemented as a more generalized and updated Lundberg-

Palmgren model. The model constant, ALP, has to be, of course,

determined by correlating the model to experimental failure

data. For the purpose of discussion of in this article, Eq. [12a] is

referred to as the “original” Lundberg-Palmgren model and the

generalized Eq. [9] is called the “updated” Lundberg-Palmgren

model.

Once the dynamic capacity is calculated from either Eq. [9] or

[12a], the raceway life due to a single contact subjected to a con-

tact load, Q, which is an output from a detailed load distributed

analysis under the applied operating conditions on the bearing,

may be written as

1

Lj
D Qj

Qcj

� �c¡ hC 2
3m

: [13]

With the values of c, h, and m as 31/3, 7/3, and 10/9, respec-

tively, the value of the load exponentc¡ hC 2
3m D 3 for the Lund-

berg-Palmgren model. Based upon a sensitivity study in the

Appendix, the values of the Weibull modulus m and c chosen by

Lundberg and Palmgren best reflect their database.

Now the life of the raceway will be calculated from an inverse

summation of individual contact lives. For the stationary race-

way each contact may be subject to a different load condition;

thus, the summation over n rolling elements will involve the
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D
ow

nl
oa

de
d 

by
 [

96
.2

49
.6

.9
2]

 a
t 0

9:
58

 0
5 

N
ov

em
be

r 
20

15
 



Weibull dispersion slope,m,

1

Ls
D

Xn
jD 1

1

Lj

� �m
 !1=m

D
Xn
jD 1

Qj

Qcj

� �c¡ hC 2
3

 !1=m

: [14]

For the rotating raceway each rolling element applies identical

loading condition. Thus, the raceway life is computed by a simple

summation over the n rolling elements

1

LR
D
Xn
jD 1

1

Lj
D
Xn
jD 1

Qj

Qcj

� �c¡ hC 2
3m

: [15]

Finally, the life the entire bearing is computed by summation

over the races

L10 D L¡m
S C L¡m

R

� �¡ 1=m
: [16]

It should be noted that by computing life individually for each

contact in the bearing and then carrying out appropriate summa-

tion over the raceway eliminates the need for computing an

“effective” or “equivalent” load as commonly done in simplified

implementation of life models. Such a generalized implementa-

tion permits more precise modeling of load variation on the

rolling elements.

Zaretsky Model

Zaretsky (23) proposed several modifications to the funda-

mental Weibull and Lundberg-Palmgren life equation, Eq. [1]:

1. Zaretsky explained that in the Lundberg-Palmgren model,

the dependence of life on the depth, zo, below the surface

where the orthogonal shear stress is a maximum implies that

the life is dependent on the time it takes for the crack to prop-

agate from the place of origination to the surface. However,

Because rolling bearing fatigue life can be categorized as

high-cycle fatigue, the crack propagation time is extremely

small in comparison to the total running time of the bearing

for a bearing made from modern vacuum-processed material.

Thus, Zaretsky (23) dispensed the term z¡ h
o , in Eq. [1]. Sub-

ject to future evaluation and validation, the exponent c to the

subsurface shear stress is kept as 31/3, as in the Lundberg-

Palmgren model.

2. The critical shear stress used in Lundberg-Palmgren model is

the maximum orthogonal shear stress, to. Zaretsky proposed

to use the maximum shear stress instead, tm, which in a ball

bearing is 30% greater than the maximum orthogonal shear

stress, to.

3. The volume of material being fatigued in the Lundberg-

Palmgren model is based on the depth, zo, at which the

orthogonal shear stress is a maximum. Zaretsky proposed

that the volume should be based on the depth, zm, at which

the maximum shear stress occurs, which is 57% greater than

the depth of maximum orthogonal shear stress.

4. It is seen that when Eq. [1] is inverted to express life as a func-

tion of shear stress, the shear-stress exponent is dependent on

scatter in the life data (the Weibull slope, m). Zaretsky dem-

onstrated for most materials that the shear stress–life expo-

nent c is independent of scatter in the data. As a result,

Zaretsky (11) modified the shear stress exponent to be equal

to cm. This makes the shear stress exponent independent of

scatter in life data once Eq. [1] is inverted to express life.

Once the Lundberg-Palmgren model is implemented in gener-

alized form (Eq. [9]), the implementation of the Zaretsky model

is quite straightforward. Modification (1) is implemented by sim-

ply setting the depth exponent, h, in Eq. [1] to zero; modifica-

tions (2) and (3) are simply accomplished by setting the values of

z and ξ to 0.30 and 0.786, respectively; finally, changing the shear

stress exponent in Eq. [1] from c to cm satisfies modification (4).

Thus, for the Zaretsky model the load capacity Eq. [9] becomes

QcZ DAZ kcZ kakbð Þ1¡ c
d

h i ¡ 3
cmC 2

u
¡ 3m
cmC 2; [17]

where ka and kb are the same as defined in Eqs. [10a] and [10b],

and constants kcZ and AZ are modified as

kcZ D 2pξ

ln 1
S

3z

2p

� �m

andAZ D K

E
2 1¡ cð Þ

3
o

 !¡ 3
2C c

: [18]

Single contact, stationary, and rotating raceways and bearing

lives are written similar to Eqs. [13] to [14] as

1

Lj
D Qj

Qcj

� �cmC 2
3m

[19]

1

Ls
D

Xn
jD 1

1

Lj

� �m
 !1=m

D
Xn
jD 1

Qj

Qcj

� �cmC 2
3

 !1=m

[20]

1

LR
D
Xn
jD 1

1

Lj
D
Xn
jD 1

Qj

Qcj

� �c¡ hC 2
3m

; [21]

and the equation of life of the bearing is identical to Eq. [16].

Note that we used the same Lundberg-Palmgren values for the

shear stress–life exponent c and the Weibull modules m of 31/3

and 10/9, respectively. The load–life exponent p in Eq. [19]

comes out to be approximately 4.0 for the Zaretsky model com-

pared to p D 3.0 for the Lundberg-Palmgren model. Thus, as the

load increases, the Zaretsky model shows a much faster drop-off

in life. A schematic comparison of the two models is shown in

Fig. 2.

The Appendix contains a sensitivity study varying the values

for c and m on p and n. For the Zaretsky model, the values for p

and n are less sensitive to variations in the Weibull modulus m

than the Lundberg-Palmgren model.

Model Implementation

The fatigue life module in the bearing dynamics computer

code ADORE (Gupta (31)) was rewritten to program both the

Lundberg-Palmgren and the Zaretsky models in the generalized

forms, as presented above. In addition, the existing original
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Lundberg-Palmgren model was preserved for comparison pur-

poses. All model coefficients, such as shear stress exponent, c,

depth exponent, h, Weibull slope, m, and survival probability, S,

are kept as variable inputs. Such an implementation eases the

development of new values for the model coefficients when cor-

relating model predictions with experimental data. The coeffi-

cients in the original Lundberg-Palmgren model, Eq. [12], of

course, remain constant. Along with applied loads, ADORE

models centrifugal and thermal expansion of all bearing ele-

ments. Thus, the change in internal clearance and contact

stresses is taken into consideration when solving for the elastic

contact solutions.

Experimental Data

As stated earlier, model coefficients in the original Lundberg-

Palmgren model are based on a large amount of unpublished

pre-1940 experimental data. For this article, four sets of experi-

mental data reported in Bamberger, et al. (32) and Zaretsky and

Bamberger (33) were selected for computing the model coeffi-

cients. All of the reported data were obtained with sets of

ABEC-5 grade, split-inner race, 120-mm bore angular-contact

ball bearings, operating with a thrust load of 25,800 N (5,800 lbf)

at an operating speed of 12,000 rpm (1.44 DN). The surface fin-

ishes were approximately 0.05 to 0.75 mm (2 to 3 min) rms on the

races and 0.025 to 0.05 mm (1 to 2 min) rms on the balls. Bearing

geometry as input into the bearing dynamics code (Gupta (31))

is documented in Table 1.

All four sets of test bearings were lubricated with polyal-

phaolefin (PAO) lubricant. Properties of the lubricant are

provided in Table 2. Note that data set 2 used less viscous

(thinner) oil in than used in sets 1, 3, and 4. The operating

temperatures of the four data sets were, respectively, 478 K

(400�F), 492 K (425�F), 533 K (500�F), and 589 K (600�F).
The lubricant film thickness–to–composite roughness ratios

for the four sets were 5 or above. Standard Weibull analysis

(Zaretsky (20); Anderson (21)) of the experimental data was

carried out to compute the L10 bearing life along with a Wei-

bull slope defined by a least-squared regression line through

the data points.

Due to the limited amount of experimental data, the statistical

variation in both the expected life and Weibull slope is signifi-

cant. Thus, the data are inadequate for computation of expected

Weibull slope and the expected L10 life. Therefore, the Wei-

Bayes method (Abernethy, et al. (37)) is used to compute the

expected experimental L10 life with the Weibull slope held fixed

at a value of 1.11, as recommended by Lundberg-Palmgren. This

results in four data points, which were fitted to the life models to

derive the model constant by using a least-squared deviation fit

analysis.

Once the model constants were derived, model predictions

were tested against another experimental data set, this one

Fig. 2—Comparison of theoretical load–life relationships for the Lund-

berg-Palmgren and Zaretsky models.

TABLE 1—ANGULAR-CONTACT BALL BEARING DETAILS

Bearing bore 120 mm

Bearing outer diameter 190 mm

Number of balls 15

Ball diameter 20.6375 mm

Pitch diameter 155 mm

Contact angle 20�

Outer race curvature factor 0.52

Inner race curvature factor 0.54

Bearing width 35 mm

Outer race shoulder diameter 165 mm

Inner race shoulder diameter 145 mm

Bearing material (balls and races) CEVMAISI M-50 steel

Lubricant Polyalphaolefin

TABLE 2—TEST LUBRICANT PROPERTIES

PAOOil Lubricant Test Sets 1, 3, 4 (Bamberger, et al. (32)) Test Set 2 (Zaretsky and Bamberger (33))

Additives Antiwear Antiwear

Antifoam Oxidation inhibitor

Kinematic viscosity, cSt at

311 K (100�F) 443.3 60

372 K (210�F) 39.7 8.9

478 K (400�F) 5.8 1.9

Pour point �C (�F) ¡37 (¡35) ¡48 (¡55)

Specific heat 2,910 J/(kg K) at 533 K

(0.695 BTU/(lb �F at 500�F)
2,810 J/(kg K) at 204�C
(0.671 BTU/(lb �F at 400�F)

Thermal conductivity J/(kg K) (BTU/(hr ft �F)) 0.12 at 533 K

(0.070 at 500�F)
0.12 at 204�C
(0.073 at 400�F)

Specific gravity 0.71 at 533 K (500�F) 0.85 at 204�C (400�F)
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obtained by Bamberger, et al. (34) for a set of 30 each 120-

mm bore angular-contact ball bearings made from VIMVAR

AISI M-50 steel. The geometry of these bearings was identi-

cal to those outlined in Table 1, except that the free contact

angle of these bearings was increased to 24�. The bearings

operated with a thrust load of 22,240 N (5,000 lbf) at an

operating speed of 25,000 rpm, which results in a DN value

of 3 million. The operating temperature was 492 K (425�F)
and the bearing was lubricated with the MIL-L-23699 lubri-

cant. Lubricant properties are documented in Bamberger,

et al. (34).

For the purpose of comparison, the computed Weibull slope,

associated L10 life as computed from the Weibull least-squared

regression, along with the estimated lives at a Weibull slope of

1.11 using the WeiBayes method are summarized in Table 3.

The failure index represents the number of bearings that failed

out of the total number in the set. Data sets 1 to 4 represent the

four data sets used to compute the model constants, and data set

5 represents the high-speed bearing case used to perform the

final model validation.

Typical Weibull plots of the experimental data are shown in

Figs. 3(a) and 3(b). Clearly, the life estimated by the WeiBayes

method with the Lundberg-Palmgren value of Weibull slope of

1.11 is different from the least-squared fit to the experimental

data. However, as discussed above, due to the limited sample

size in the present investigation and large expected variability in

Weibull slope, the L10 life estimated by the WeiBayes method is

used to correlate the model predictions and derive the model

constants.

For a valid correlation of experimental life with analytical

model predictions, in all of the five data sets, it is essential to

apply life modification factors to determine the corresponding

basic subsurface life because the experimental data represents

life under actual operating conditions. The commonly used

STLE publication (Zaretsky (26)) provides simple life modifica-

tion factors for improved materials and lubrication conditions;

the factors are applied as simple multipliers on the basic subsur-

face (Lundberg-Palmgren) life.

Tallian (27) presented a more comprehensive formulation of

experimentally validated life modification factors; these factors

are applied to each individual contact in the bearing and thus the

implementation is significantly more complex. In the present

investigation, Because life is computed at each contact before

summation over the races, no additional work was involved in

implementing the Tallian life factors. Simply for the purpose of

comparison, life factors based on both methods were computed

for the five experimental data sets. The results are summarized

Table 4 along with a summary of bearing materials and operat-

ing conditions. It is interesting to note that though the Tallian

life factors are somewhat more conservative, the overall magni-

tudes of the two sets of life factors are not greatly different.

TABLE 3—EXPECTED L10 BEARING LIVES FOR THE EXPERIMENTAL DATA SETS

Weibull Least-Squared Fit Analysis

Data

Set

Failure

Index

Weibull

Slope

L10

Life (h)

Expected L10 Life (h) with a

Weibull Slope of 1.11

Set 1 10/27 1.724 311.3 195.9

Set 2 14/27 1.906 195.7 101.5

Set 3 11/26 3.560 432.2 161.7

Set 4 6/26 1.920 260.9 205.0

Set 5 6/30 1.873 1,640 1,535

Fig. 3—Weibull plots for endurance characteristics of two data sets of

120-mm bore angular-contact ball bearings. Thrust load, 22.24

kN (5,000 lbf); inner race, forged; material, CEVM AISI M-50

steel; material hardness at room temperature, 63 RC; contact

angle, 20�; speed, 12,000 rpm. (a) Experimental data set 1, tem-

perature 478 K (400�F), failure index 10 out of 23 bearings

tested. (b) Experimental data set 4, temperature 589 K (600�F),
failure index 6 out of 26 bearings tested.
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Therefore, simply due to their more comprehensive and conser-

vative nature, the Tallian life factors were used in the present

investigation to derive the basic subsurface fatigue life, corre-

sponding to the experimental life, for validating the life models.

Note that life modification factors are only used to make a valid

comparison of analytical predictions with actual experimental

data. In all other parametric studies, only the basic subsurface

lives, free of any life modification factors, are presented, because

the principal objective of the present investigation is to compare

the various subsurface fatigue life models.

Based on the experimental data discussed above, the model

constants ALP and AZ in Eqs. [9] and [16] were computed by

least-squared fit analysis of the predicted lives against the experi-

mental lives for data sets 1 to 4. Once the model constants were

established, the experimental life with data set 5 was then com-

pared with model prediction to further establish reliability of

model predictions.

Because the generalized formulations presented herein show

sensitivity of life with elastic modulus, the physical properties

used for the AISI M-50 steel in comparison to those of AISI

52100 steel are summarized in Table 5.

For VIMVAR AISI M-50 steel a significant drop in elastic

modulus with increased temperature has been reported in the lit-

erature (38). At the operating temperature of 492 K for data set

5, the elastic modulus drops to 166 GPa. No such data are pres-

ently available for the CVM AISI M-50 steel. Thus, a constant

value of elastic modulus for data sets 1 to 4 was assumed.

It should be pointed out that in the present investigation no

thermal analysis was undertaken. The available experimental

data simply report one operating temperature. This temperature

is used for all races and all rolling elements. In reality, the bear-

ing will have a temperature field that will vary with applied load

and operating speeds. Therefore, a more advanced modeling of

life will require a close integration of life equations and thermal

interactions. Unlike the original Lundberg-Palmgren model,

where the empirical life constant includes the elastic properties

of AISI 52100 bearing steel, the newly developed updated Lund-

berg-Palmgren and Zaretsky models introduce a new elastic

property parameter and the empirical life constants are free of

any elastic properties. However, the change in contact load and

geometry resulting from the change in elastic properties and

thermal expansion of the bearing elements is accounted for in all

models. Whereas the operating temperature results in thermal

distortion of bearing elements, the change in elastic properties

affect the centrifugal expansion of the rotating race. Thus, both

the operating temperature and speed affect the operating inter-

nal clearance and hence the load distribution in the bearing. The

room temperature and operating internal clearances for the five

experimental data sets are summarized in Table 6.

MODEL CORRELATION AND VALIDATION

A least-squared deviation analysis between the predicted and

experimental lives, for experimental data sets 1 to 4, yields the

values of model constants ALP and AZ as 3.8540 £ 106 N/m1.80

and 3.6635 £ 105 N/m1.332, respectively, for the updated Lund-

berg-Palmgren and Zaretsky models. The constant A in the orig-

inal Lundberg-Palmgren model is, of course, 2.4640 £ 107 N/

m1.80 as stated earlier.

Although, as expected, units of the model constant in the

updated and original Lundberg-Palmgren models are identical,

the difference in the values corresponds to the different variable

constituents of Eqs. [9] and [12a]. The difference in units of the

model constants between the Lundberg-Palmgren and Zaretsky

models corresponds to elimination of the shear stress depth, h,

term and replacement of exponent c with cm in the fundamental

life Eq. [1] for the Zaretsky model.

With the above model constants, the computed dynamic load

capacities for the test bearing are compared in Fig. 4a. As

expected, the load capacities between the original and updated

Lundberg-Palmgren models are almost identical. The observed

very small difference is attributed to a small difference in elastic

properties between the AISI M-50 and AISI 52100 steels. The

TABLE 4—SUMMARY OF EXPERIMENTAL DATA SETS AND APPLICABLE LIFE MODIFICATION FACTORS

Data

Set

Bearing

Material Lubricant

Operating

Temperature (K)

Thrust

Load (kN)

Inner Race

Speed (rpm)

STLE Life

Factor (Zaretsky (26)

Tallian Life

Factor (Tallian (27))

1 CVMAISI M-50 PAO 478 (400�F) 25.80 12,000 8.88 6.51

2 CVMAISI M-50 PAO 492 (425�F) 25.80 12,000 8.25 6.48

3 CVMAISI M-50 PAO 533 (500�F) 25.80 12,000 8.53 6.39

4 CVMAISI M-50 PAO 589 (600�F) 25.80 12,000 8.10 6.15

5 VIMVAR

AISI M-50

MIL-L-23699 492 (425�F) 22.24 25,000 32.19 30.46

TABLE 5—PHYSICAL PROPERTIES OF BEARING MATERIALS AT ROOM TEMPERATURE

Property CVMAISI M-50 VIMVARAISI M-50 CVMAISI 52100

Density (kg/m3) 7,830 8,027 7,827

Elastic modulus (GPa) 203 203 201

Poisson’s ratio 0.28 0.28 0.277

Thermal coefficient of expansion (m/m/K) 1.298£ 10¡5 1.006£ 10¡5 1.15 £ 10¡5
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Zaretsky model provides a significantly lower load capacity. This is

primarily due to a higher load-life exponent in the Zaretsky model

because the life at 1 million revolutions involves a very high load.

Comparison of predicted L10 lives against the observed exper-

imental life for the four test cases is shown in Fig. 4b. Again, the

small difference in life between the original and updated Lund-

berg-Palmgren lives is attributed to a small difference in elastic

properties. Both the load capacities and predicted lives with the

original and updated Lundberg-Palmgren models are identical if

the elastic properties are set to those of AISI 52100 steel. This

established analytically sound implementation of the models in

the computer code. Predictions of the Zaretsky model under the

test operating conditions are almost identical to those of the

updated Lundberg-Palmgren model. Except for the scatter in

the experimental data, the lives for the four test conditions are

almost the same. Statistical analysis of the variance in experi-

mental data shows that the differences in lives of the four data

sets are statistically indistinguishable.

Once the model constants are established by regression analy-

sis of the above four experimental data sets, the model predic-

tions are compared with another experimental data set obtained

with another 120-mm turbine engine angular-contact ball bear-

ing operating at 3 million DN. The material for this bearing is

VIM-VAR AISI M-50 steel. At an operating temperature of

492 K (425�F), it has been reported that the elastic modulus

reduces to 1.66 £ 1011 N/m2 from a room temperature value of

2.03 £ 1011 N/m2 (38). With such a reduction in elastic modulus

(about 18%), the L10 lives predicted by both the updated Lund-

berg-Palmgren and Zaretsky models are more than three times

higher than those calculated by the original Lundberg-Palmgren

formulation.

Figure 5a shows a comparison of load capacities, and Fig. 5b

compares the predicted lives against the experimental data. Note

that the lives predicted by both the updated Lundberg-Palmgren

and Zaretsky models are very close to the life observed experi-

mentally. Life predicted with the original Lundberg-Palmgren

model, where the elastic properties are fixed to those of AISI

52100 steel at room temperature, is significantly lower. Also

shown in Fig. 5b are life predictions at room temperature, which

are very similar and comparable between the various models.

It is interesting to note that though the predicted lives at room

temperature are nearly identical between the original and updated

Lundberg-Palmgren models, the original model shows a slight

drop in life at the higher operating temperature where the elastic

modulus is significantly lower. This is primarily attributed to

increased centrifugal expansion of the rotating inner race with the

lower elastic modulus at the high operating temperature. Though

the original Lundberg-Palmgren life equation does not provide for

variation of elastic properties, the increase in contact load resulting

from reduced internal clearance due to increased centrifugal

expansion of the inner race is accounted for when the model is

TABLE 6—ROOM TEMPERATURE AND OPERATING INTERNAL CLEARANCES UNDER EXPERIMENTAL CONDITIONS

Data

Set

Room Temperature

Clearance (mm)

Operating

Temperature (K)

Operating

Speed (rpm)

Operating

Clearance (mm)

1 0.1493 478 (400�F) 12,000 0.1051

2 0.1493 492 (425�F) 12,000 0.1022

3 0.1493 533 (500�F) 12,000 0.09374

4 0.1493 589 (600�F) 12,000 0.08218

5 0.2141 492 (425�F) 25,000 0.04734

Fig. 4a—Comparison of dynamic load capacities for the test bearing at

1.44 DN. Fig. 4b—Comparison of basic L10 bearing lives at 1.44 million DN.
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implemented in the computer code. As a result, there is a small

drop in life at the higher temperature, as shown in Fig. 5b.

Although the Lundberg-Palmgren and Zaretsky models show

similar results in the comparisons discussed above, the Zaretsky

model, due to a higher load–life exponent, predicted a signifi-

cantly higher life at light loads and a much faster drop-off in life

as the load increases. This is seen in Fig. 6a, where the predicted

lives are plotted as a function of speed with the VIM-VAR AISI

M-50 bearing operating at 492 K (425�F). As the speed

increases, the centrifugal loading increases, which results in a

reduction of life. Due to the faster drop-off in life with increasing

load with the Zaretsky model, the predicted life is actually some-

what lower than that predicted by the updated Lundberg-Palmg-

ren model. The significantly lower life prediction by the original

Lundberg-Palmgren model is directly related to the fixed and sig-

nificantly higher value of elastic modulus.

For comparison, the results of Fig. 6a are replotted in Fig. 6b

with the elastic modulus set to the room temperature value. Now

both the original and updated Lundberg-Palmgren models show

nearly identical lives, whereas the Zaretsky model predicts a

higher life at low speeds.

Load–life dependence with the various models is somewhat

better seen in Fig. 7, where the predicted lives are plotted as a

function of applied load at the lower speed (1.44 million DN)

with AISI M-50 elastic modulus at room temperature. Now the

predicted lives with the original and updated Lundberg-Palmg-

ren models are closely identical and the Zaretsky model predicts

a much higher life at lighter loads. As the load increases, the dif-

ference in predicted lives reduces. At the highest loads, the life

predicted by the Zaretsky model is actually lower than that esti-

mated with Lundberg-Palmgren model.

The key contribution of the generalized expressions developed

in the present investigation is improved modeling of variation in

elastic properties of the bearingmaterials. Although the changes in

contact geometry and the resulting effect on volume of thematerial

stressed are accounted for in the original Lundberg-Palmgren life

equation, the empirical life constant is based on constant elastic

properties corresponding to the common AISI 52100 bearing steel

and there is no provision for variation in elastic properties in the

life equation. The empirical constants in both the updated Lund-

berg-Palmgren and Zaretsky models are free of elastic properties

of the bearing materials and the life equations include a new elastic

property ratio term that defines the elastic properties variation in

terms of a ratio of properties of the current material to those of

room temperatureAISI 52100 bearing steel.

To more precisely demonstrate the significance of elastic

property variation, Fig. 8 plots life variation as a function of elas-

tic modulus of the bearing material. The test ball bearing of

experimental data sets 1 to 4 is used for these parametric runs

but the elastic modulus of bearing material is varied arbitrarily.

All runs are made at room temperature with an applied thrust

load of 25,000 N and at an operating speed of 12,000 rpm.

Although the elastic property term in the newly developed

Fig. 5a—Comparison of load capacities at 3 million DN with VIM-VAR

AISI M-50 properties (experimental data set 5).

Fig. 5b—Comparison of basic L10 bearing lives at 3 million DN with VIM-

VAR AISI M-50 steel at 492 K (425�F) and room temperature

(experimental data set 5).

Fig. 6a—Life as a function of speed with AISI M-50 elastic modulus at

operating temperature of 492 K (400�F).

Fig. 6b—Life as a function of speed with AISI M-50 elastic modulus at

room temperature.
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equations permits independent variation of elastic properties of

the rolling elements and both races, for simplicity the same mod-

ulus values for the rolling elements and the races are used in

these parametric runs.

As the modulus drops, lives computed with the updated

Lundeberg-Palmgren models sharply increase; lives with the

Zaretsky model are slightly greater in comparison to the

updated Lundberg-Palmgren model but the differences are

quite small under the operating conditions for these paramet-

ric runs. Life variation as a function of the modulus is insig-

nificant with the original Lundberg-Palmgren model. A very

small drop in life predicted by the original Lundberg-Palmg-

ren model with increasing modulus, not clearly seen in Fig. 8,

is a result of variation of contact geometry and centrifugal

expansion of the rotating race with elastic modulus. This

proves that variations in life due to these effects are insignifi-

cant in comparison to those contributed by elimination of

elastic properties from the empirical life constant. It may

also be noted that at a modulus value of about 200 GPa,

which is the value for AISI 52100 bearing steel at room tem-

perature, life computed by all of the models is about the

same. In fact, the lives computed by the original and updated

Lundberg-Palmgren models are identical as expected.

As the modulus increases, the internal clearance in the

bearing increases due to reducing centrifugal expansion of

the rotating inner race, and the contact stress increases pri-

marily due to reduced contact size for given load on the

bearing. These effects are taken into account in all models.

Figure 9 shows the variation in internal clearance and contact

stress with modulus for the parametric runs.

Summary of Results

The bearing dynamics computer code ADORE (Gupta (31)),

which is based on the bearing dynamic analysis of Jones (19),

was used to develop generalized expressions for both the Lundberg-

Palmgren and the Zaretsky rolling element fatigue life models Pub-

lished experimental data for a jet engine bearing (Bamberger, et al.

(32); Zaretsky and Bamberger (33); Bamberger, et al. (34)) were

used to derive the constants in the life equation. Model predictions

were then compared with another set of high-speed turbine engine

bearing life data (Bamberger, et al. (34)). Subsurface fatigue life

models for ball bearings were generalized to permit parametric elas-

tic property variation on subsurface shearing stress.Model constants

were derived by least-squared regression analysis of available exper-

imental life data.

Generalized life equations for both the Lundberg-Palmgren

and the Zaretsky models in which, unlike the Lundberg-Palmg-

ren model, the shearing stress–life exponent in the fundamental

life equation is independent of scatter in life data and life depen-

dence on depth of critical failure stress is eliminated, were devel-

oped and incorporated into the commercially available bearing

dynamics code, ADORE. The following results were obtained:

1. For AISI 52100 steel, the updated Lundberg-Palmgren model

shows identical results when compared with the original Lund-

berg-Palmgren formulation. As the elastic properties deviate

from those of AISI 52100, the predicted lives between the origi-

nal and updated Lundberg-Palmgrenmodels begin to deviate.

2. For the VIM-VAR AISI M-50 bearing steel at a temperature

of 492 K (425�F), where a reduction in elastic modulus of as

much as 18% has been reported, the predicted L10 life of a

typical 3 million DN gas turbine engine bearing with both the

updated Lundberg-Palmgren and the Zaretsky models is in

complete agreement with experimental data. The life calcu-

lated by the original Lundberg-Palmgren model is about

three times lower.

3. Parametric evaluation of the Lundberg-Palmgren and Zaret-

sky models demonstrates that at light loads the Lundberg-

Fig. 7—Life as a function of thrust load with the CVM AISI M-50 120-mm

bore angular-contact ball bearing, operating at 12,000 rpm with

PAO lubricant at a temperature of 478 K (400�F).

Fig. 8—Life as a function of elastic modulus for the test ball bearing at

room temperature with a thrust load of 25,000 N and operating

speed of 12,000 rpm.

Fig. 9—Variations in operating internal clearance and maximum contact

stress in the bearing as a function of elastic modulus for the test

ball bearing at room temperature with a thrust load of 25,000 N

and operating speed of 12,000 rpm.
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Palmgren model significantly underestimates the bearing life.

As the applied load increases, the Zaretsky model shows a

much faster drop off in life in comparison to the Lundberg-

Palmgren model. Such a behavior is a direct result of the ball

bearing load–life exponent of 4 in the Zaretsky model in com-

parison to 3 in the Lundberg-Palmgren model.
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APPENDIX—EFFECT OF VARYING THEWEIBULL

MODULUSm AND SHEAR STRESS EXPONENT c ON

THE LOAD–LIFE EXPONENT p AND THE HERTZ

STRESS LIFE EXPONENT n—A SENSITIVITY STUDY

Lundberg-Palmgren Model

In 1947, Lundberg and Palmgren (4) applied the Weibull

analysis to the prediction of rolling-element bearing fatigue

life. In order to better match the values of the Hertz stress–

life exponent n and the load–life exponent p with experimen-

tally determined values from pre-1940 tests on air-melt steel

bearings, they introduced another variable, the depth to the

critical shearing stress z to the h power, where f (h) in Eq.

[1] of the text can be expressed using the product law of
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reliabilities as

ln
1

S
D
Z
V

f Nð ÞdV [A1]

and where

f Nð Þ/ tchm

zh
ln

1

0:90
: [A2]

The rationale for introducing zh was that it took a finite time

period for a crack to propagate at a distance from the depth of

the critical shearing to the rolling surface. Lundberg and Palmg-

ren assumed that the time for crack propagation was a function

of zh.

Applying Eq. [A2] to Eq. [A1],

N / 1

t

� �c=m 1

V

� �1=m

zð Þh=m ln
1

S
=ln

1

0:90

� �1=m

; [A3]

where N is the life in stress cycles for an arbitrary reliability S.

For their critical shearing stress, Lundberg and Palmgren

chose the orthogonal shearing stress, to. From Hertz theory

(Jones (39)),

z/ pH [A4a]

t/ pH [A4b]

V / d£ p2H : [A4c]

For point contact, substituting Eqs. [A4a], [A4b] and [A4c] in

Eq. [A3], and denoting life as L (millions of revolutions) instead

of N (number of stress cycles), Eq. [A3] may be written as

L/ 1

pH

� �c=m 1

p2H

� �1=m

pHð Þh=m / 1

pnH
: [A5]

From Zaretsky, et al. (40), solving for the value of the expo-

nent n for point contact (ball on a raceway) from Eq. [A5] gives

nD cC 2¡ h

m
: [A6]

Lundberg and Palmgren (4), using values of 1.11 for m, c D
10.33, and h D 2.33, from Eq. [A6] for point contact

nD 10:33C 2¡ 2:33

1:11
D 9: [A7]

From Hertz theory (Jones (39)) for point contact

pH /Q1=3; [A8]

Eq. [A5] becomes

L/ 1

pnH
/ 1

Qp
: [A9]

From Eqs. [A8] and [A9] for point contact, where n D 9,

pD n

3
D 9

3
D 3: [A10]

These values of n and p for point contact correlated to the

then-existing rolling-element bearing database, which can be

assumed were generated in Sweden with air melt–processed

AISI 52100 steel prior to World War II. In their 1947 paper,

Lundberg and Palmgren (4) stated that their database reflected a

variation in the Weibull modulus m between 1.1 and 2.1 and a

load–life exponent p equal to 3. It is not intuitively obvious how

they selected values for the shear stress–life exponent c and the

exponent h related to the depth to critical shearing stress z. It

was assumed by us that these values were made to fit their exist-

ing values by trial and error.

To determine the sensitivity of the Weibull modulus m on

the load–life exponent p and the Hertz stress–life exponent

n, the Weibull modulus m in Eq. [A6] was assumed to be 1,

1.5, and 2 with c D 10.33 and h D 2.33. The resultant values

for the load–life exponent p were 3.33, 2.22, and 1.66, respec-

tively. For these values, the Hertz stress life exponent n was

10, 6.67, and 5, respectively. Clearly, a Weibull modulus

of ‘‘approximately 1 best reflects the Lundberg-Palmgren

database.

The shear stress–life exponent c in Eq. [A7] was varied and

assumed to be 9, 10, and 11 for a Weibull modulus equal to 1.

The resultant values for the load–life exponent p were 2.89,

3.22, and 3.56. For these values, the Hertz stress life exponent

n was 8.67, 9.67, and 10.67. Clearly, for the Lundberg-Palmg-

ren model, life can be more sensitive to variations in the Wei-

bull modulus m than to variations in the shear stress–life

exponent c.

Zaretsky Model

Applying the Weibull distribution function with reliability S1,

the function f .N/ expressed by an arbitrary life N can be devel-

oped by Eq. [A11].

f .N/D ln
1

S1
D N

N63

� �m

D N

N10

� �m

ln
1

0:9
; [A11]

where N63 is the characteristic life at which 63.2% of the bearings

are expected to fail. The conventional f .N/ functions are almost

lacking in the (ln 1/0.9) term.

Further, introducing the stress–life relation N10 / t¡ c into

Eq. [A11] and then substituting this into Eq. [A1], the life h in

stress cycles is given by Eq. [A12]. Here a1 denotes a reliability
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factor.

N / a1
1

t

� �c 1

V

� �1=m

; a1 D lnS

ln0:9

� �1=m

: [A12]

For critical shearing stress t, Zaretsky (23) chose the maxi-

mum shearing stress, tm.

In the case where S D 0.9, a1 D 1, and L D N/u denotes life in

units of 106 rev unit for one rotating ring, then Eq. [A12] can be

written as

L/ 1

t

� �c 1

V

� �1=m

/ 1

pnH
: [A13]

From Zaretsky, et al. (40), solving for the value of the

Hertz stress–life exponent n, for point contact from

Eq. [A13] gives

nD cC 2

m
[A14a]

and from Eq. [A10],

pD n

3
: [A14b]

If Lundberg-Palmgren values are assumed, where c D 10.33

andm D 1.11, p D 4.04 and n D 12.13 for the point contact.

To determine the sensitivity of the Weibull modulus m on the

load–life exponent p and the Hertz stress–life exponent n, the

Weibull modulus m in Eq. [A14] was assumed to be 1, 1.5, and 2

with c D 10.33. The resultant values for the load–life exponent p

were 4.11, 3.89, and 3.78, respectively. The values for the Hertz

stress life exponent n were 12.33, 11.66, and 11.33, respectively.

The values for p and n are less sensitive to variations in the Wei-

bull modulus m for the Zaretsky model than for the Lundberg-

Palmgren Model.

The shear stress–life exponent c in Eq. [A14a] was varied and

assumed to be 9, 10, and 11 for a Weibull modulus equal to 1.

The resultant values for the load–life exponent p were 3.67, 4,

and 4.33. For values for the Hertz stress life exponent n, the val-

ues were 11, 12, and 13. As with the Weibull modulus, the varia-

tion in the values for p and n are within those of the existing

database (Parker and Zaretsky (41)).
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