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Current state-of-the-art in modeling the performance of

rolling bearings is reviewed in terms of fundamental analyti-

cal formulations and the development of computer codes for

performance simulations. Some of the basic equations, which

constitute the foundation of the various types of models, are

reviewed before presenting a schematic approach for the de-

velopment of rolling bearing models. Some of the key devel-

opments over the last several decades that have led to the cur-

rent status of rolling bearing modeling are presented. Though

some of the models are restricted to the developing organiza-

tions, and their use is only available in terms of application

support, others have been packaged in the form of commer-

cially available software products. These models provide im-

mediate practical implementation of several tribological disci-

plines in their most up-to-date and advanced form. With the

advancements in high-speed computing technologies, solutions

to the most sophisticated analytical formulations have become

possible. However, the parallel advancement in rotating ma-

chinery systems has continued to challenge the state-of-the-art

of rolling bearing modeling and in order to meet the future re-

quirements, further developments in certain areas are required.

Such requirements include improvements in lubricant behav-

ior, development of lubricant and material property databases,

more advanced thermal management and modeling of bear-

ing interactions, more sophisticated models to estimate energy

dissipated in lubricant churning and drag, and implementation

of modern object-oriented computing languages for better sup-

port of modeling software products on the current and antici-

pated future computer systems.
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INTRODUCTION

Due to their high stiffness and a wide range of load, speed,
and operating temperature sustainability, rolling bearings appli-
cations have ranged from simple bicycles to very sophisticated
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gas turbine engines used in aircraft engines and cryogenic tur-
bopumps that form critical parts of the space shuttle propulsion
system. At first sight, a rolling bearing indeed appears to be a
simple mechanical component consisting of a set of rolling ele-
ments rolling between a stationary and rotating race and sepa-
rated by a cage. Interaction between each one of these elements
of the bearing also appears to be quite simple and, therefore, sim-
ulation of rolling bearing performance should be a straightfor-
ward task. However, it is the coupling between the simple inter-
action of bearing elements that makes modeling and simulation
of real-time performance of a rolling bearing a difficult task. For
example, a slight change in shaft speed produces slip between the
race and rolling elements; this slip tends to shear the lubricant
film at the rolling element to race interface, which produces heat
and alters the lubricant temperature and therefore its properties,
which in turn affects traction forces between the interacting ele-
ments; the change in traction imposes acceleration on the rolling
elements, which leads to collision between the rolling elements
and cage. Based on the applied loads on the bearing, the loads at
each rolling element contact may be different and therefore cage
pocket interaction may vary from ball to ball. Furthermore, inter-
action in one cage pocket may affect interaction in other pockets
because the cage is a one-piece element. Thus, although each in-
teraction in the bearing may be quite simple, modeling the bear-
ing as a whole becomes a rather difficult task.

Due to the above complexities in model development, the de-
velopment of any critical rolling bearing design has often been
based on experimental investigations where the actual bearing is
tested under simulated conditions to validate the design. Because
the number of design and operational parameters is often quite
large, such a development process becomes an extremely labo-
rious and expensive task. Such development difficulties have led
to analytical model development, where the bearing performance
may be simulated parametrically as a function of various design
and operational parameters. These simulations can significantly
narrow down the number of parameters over which the bear-
ing performance may be critical. Thus, the parameter matrix for
experimental investigation can be greatly reduced. In addition,
the models are constantly validated against experimental data for
increasing confidence in model predictions. Model development
tasks have therefore been closely interfaced with experimental
investigations. Figure 1 schematically outlines the development
process. Based on an available materials database and the perti-
nent operating conditions, a preliminary design is developed and
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Rolling Bearing Modeling 395

Fig. 1—Typical model development process.

an experimental apparatus, or test rig, is designed. Actual bearing
behavior is then measured and compared with the model predic-
tions. Reliability of model predictions therefore increases and the
models become increasingly significant for practical design and
performance simulation.

Over the past several decades there has been a significant in-
terest in model development, and a number of models have be-
come available for rolling bearing design and performance simu-
lation. A technical review of these models, their capabilities, and
limitations is the subject of this article. In addition, anticipated
future requirements are outlined to provide guidance for model
enhancements and further development.

TYPES OF ROLLING BEARING MODELS

As shown schematically in Fig. 2, fundamentally there are
three elements to any triboelement: constitutive equations, ge-
ometric compatibility, and governing equations. Constitutive
equations define the load deflection relations for the materials
being used. For rolling bearings this includes materials for rolling
elements, races, and the cage. In addition, the lubricant behavior,
as defined by the traction–slip relation, is included under this title.
In the event that there is interaction between the races, housing,
and shaft, the load deflection relation applicable to both outer
race and housing and inner race and shaft must also be included.
Rolling bearing geometric compatibility includes any external

Fig. 2—Basic components of a model.

Fig. 3—Types of models and governing equations.

constraints applied on the bearing; a good example is application
of preload in a set of two ball bearings that are mounted as a pair,
and any axial displacement is constrained for the pair. Govern-
ing equations define the laws under which the bearing elements
move. This is where the models tend to differ from each other.
As shown schematically in Fig. 3, there are basically three types
of governing equations: equilibrium, where the summation of all
forces and moments are equated to zero; eigenvalue, where equi-
librium solutions are sought for certain values of a critical param-
eter; and propagation or dynamic, where the applied forces and
moments are equated to products of mass and acceleration and
moment of inertia and angular acceleration, respectively. Thus,
there could be three types of models: equilibrium, eigenvalue,
and dynamic. For rolling bearings, equilibrium-type models have
been used extensively to estimate overall load distribution on the
rolling elements, contact stresses, lubricant film thicknesses, bear-
ing stiffness, and classical fatigue life of the bearing. Eigenvalue-
type models are used when computation of certain natural fre-
quencies and internal noise generated in the bearing is required.
Because stiffness in a rolling bearing is generally nonlinear, perti-
nent eigenvalue problems represent a linearized simulation in the
vicinity of applied operating conditions. A dynamic formulation
is required when cage interactions, roller skid and skew, thermal
modeling, geometrical imperfections, wear, and all related insta-
bilities have to be modeled. Except for a rather small number
of precision applications, where bearing noise is an issue, most
rolling bearing applications may be modeled either by a static or
a dynamic formulation.

ANALYTICAL OVERVIEW

As discussed above, an equilibrium model consists of force
and moment equilibrium equations, which can be solved for
compatible displacements, whereas the dynamic model is based
on the integration of classical differential equations of mo-
tion of each bearing element. Because all cage forces, lubri-
cant traction, and all related frictional forces are quite small
in comparison to the applied load support forces at the rolling
element–to-race contacts, the equilibrium problems are generally
formulated in terms of the applied forces in the axial and ra-
dial directions. In the event that there are applied moments on
the bearing, which result in relative race misalignment, the mo-
ment equilibrium equations are also written, again only in terms
of the applied normal forces while neglecting all frictional forces.
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396 P. K. GUPTA

Fig. 4—Schematic of ball loads.

In a dynamic formulation in a generalized six-degrees-of-freedom
system, however, all normal and frictional forces are considered.
This makes the simulation of the cage motion, which is based on
small normal and frictional forces at the various cage contacts,
possible. An overview of the analytical formulation, for both the
equilibrium and the dynamic models, is presented below.

Equilibrium Modeling in Rolling Bearing

As shown schematically in Fig. 4, the equilibrium equations
for a ball, in the axial and radial directions, in an angular contact
ball bearing are respectively written as:

2∑
i=1

Qi sinαi = 0 [1a]

2∑
i=1

Qi cos αi + Fc = 0 [1b]

where the subscript i refers to outer and inner race contacts; Q is
the contact load; α is the contact angle, and, Fc is the centrifugal
force on the rolling element. The contact load is a function of the
relative axial and radial positions of the bearing elements. Thus,
Eqs. [1a] and [1b] may be reduced to two simultaneous nonlinear
algebraic equations in terms of the axial and radial displacements,
which may be solved by iterative procedures.

Similarly, the equilibrium equations for the race are written
as:

n∑
i=1

Qi cos αi + Fx = 0 [2a]

n∑
i=1

Qi cos αi cosψi + Fr = 0 [2b]

where n is the number of rolling elements and Fx and Fr are the
applied axial and radial forces, respectively, and ψ is the azimuth
angle, which defines the angular position of the rolling element
around the bearings, as illustrated in Fig. 5.

Once again, Eqs. [2a] and [2b] may be reduced to two alge-
braic equations in terms of relative axial and radial position of
the race, which may be solved by an iterative procedure. Thus,
the force equilibrium solution is a two-step process: first, a race
position is assumed and the ball equilibrium is solved; race po-

Fig. 5—Ball angular position and race azimuth.

sition is then corrected to satisfy the equilibrium equations and
ball equilibrium is repeated. The iterative process continues until
the race equilibrium equations converge. Such a procedure has a
numerical advantage over solving the ball and race equilibrium
simultaneously, which, depending on the number of balls in the
bearing, may require inversion of a large matrix at each iterative
step. Specific details of actual implementation of the solution pro-
cedure vary in the different models currently available.

Procedures for roller bearings are similar to that discussed
above. The primary difference is in the load displacement rela-
tions. For ball bearings, the classical Hertzian point contact so-
lution is used, whereas for roller bearings semi-empirical pro-
cedures as outlined by Jones (1) and Harris (2) are commonly
used.

Aside from computing the interacting loads, computation of
rolling element velocities compatible with the input race angular
velocity is also required. A possible kinematic constraint is that
the relative slip between the rolling element and interacting race
is zero at a given point in the contact zone. Applying such a con-
straint at both outer and inner race contacts provides two equa-
tions, which are adequate for roller bearings, where the roller just
has two velocity components: rotation about its axis and motion
of roller center around the bearing. For an angular contact ball
bearing, however, the ball angular velocity has two components
about the x and z axes, as shown in Fig. 6. In addition, there is
ball orbital velocity corresponding to the motion of ball around
the bearing. Thus, in addition to the kinematic constraints dis-
cussed above, an additional constraint is required to complete the
angular velocity formulation. After significant experimental evi-
dence, Jones (1) proposed the most commonly used race control
hypothesis. The hypothesis states that the rolling element angular
velocity relative to that of the race about an axis, which is normal
to the plane of contact, is zero on the race that provides larger
friction torque, and the pertinent race is said to be the control-
ling race. For computation of friction torque, a constant friction
coefficient is generally assumed.

In lieu of the race control hypothesis, an alternate constraint
may be to minimize the total frictional energy dissipated in the
outer and inner race contacts, as stated by Gupta (3). Under any
arbitrary lubrication condition, if the frictional energy due to rel-
ative rolling element–to-race slip is E1 and E2 (at the outer and
inner race, respectively) and the inclination of the rolling element
angular velocity vector is β, as shown in Fig. 6, then the constraint
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Rolling Bearing Modeling 397

Fig. 6—Orientation of ball angular velocity vector.

is implemented as:

∂

∂β
(E1 + E2) = 0 [3]

Dynamic Modeling in Rolling Bearing

In dynamics modeling, the equilibrium equations are replaced
by differential equations of motion, which are integrated as a
function of time to obtain a real-time simulation of bearing mo-
tion. In general, the bearing element motion is divided into two
parts: motion of the element mass center and rotation of the bear-
ing element about its mass center (Walters (4); Gupta (5), (6)).
Any rolling bearing is comprised of basically four elements: the
rolling elements (ball or rollers), the cage, the outer race, and the
inner race. The equations of motion for a rolling element are con-
veniently written in a cylindrical coordinate frame, illustrated in
Fig. 7.

mẍ = Fx [4a]

mr̈ − mrθ̇2 = Fr [4b]

mrθ̈+ 2mṙθ̇ = Fθ [4c]

where m mass of the rolling element; (x, r, θ) are the axial, radial,
and orbital coordinates; and (Fx, Fr, Fθ) are the components of
the applied force vector in the respective directions.

Fig. 7—Cylindrical coordinates for rolling element motion.

Motion of the cage and the races (both outer and inner) may
be modeled in the Cartesian coordinate frame (X, Y, Z).

mẍ = Fx [5a]

mẍ = Fy [5b]

mẍ = Fz [5c]

where m is the mass of the element being considered and (Fx, Fr,
Fz) are components of the applied force vector in the (X, Y, Z)
coordinate frame.

In the most generalized fashion the rotational motion on any
bearing element may be modeled by the classical Euler equations
of motion, as outlined by Walters (4) and Gupta (5), (6), writ-
ten in a body fixed frame, located along the principal triad (ori-
ented along the three principal axes of the element), as shown in
Fig. 7.

I1ω̇1 − (I2 − I3)ω2ω3 = G1 [6a]

I2ω̇2 − (I3 − I1)ω3ω1 = G2 [6b]

I3ω̇3 − (I1 − I2)ω1ω2 = G3 [6c]

where (I1, I2, I3) are the three principal moments of inertia,
(ω1, ω2, ω3) are the three components of the angular velocity vec-
tor, and (G1,G2,G3) are the three components of the applied mo-
ment vector.

Each second-order differential equation in the above equa-
tions can be reduced to two first-order equations by introducing
velocity as an additional variable. For example, Eq. [5a] may be
written as:

ẋ = v [7a]

mv̇ = F [7b]

Likewise, the angular velocities and acceleration may be reduced
to angles and their first derivatives. In general, three angles, sim-
ilar to classical Euler angles, corresponding to the three angular
velocities can be defined as done by Walters (4) and Gupta (5),
(6). In addition, the angles may be used to define transformation
between different coordinate frames while solving for geometri-
cal interaction between two elements. These definitions are slight
variations of Euler angles such that no singularities are encoun-
tered for range of motion of the bearing elements and the trans-
formation matrix remains orthogonal.

In order to facilitate efficient implementation and vectoriza-
tion on a computer system, the equations of motion may be pre-
sented in matrix form in terms of generalized position and deriva-
tive vectors defined by the three coordinates locating the mass
center of a bearing element and three angles locating the angular
position. Such a generalized position and derivative vectors may
be written as:

x = {
x, r, θ, ẋ, ṙ, θ̇, η, ξ, ζ, η̇, ξ̇, ζ̇

}T [8]

y = ẋ = {
ẋ, ṙ, θ̇, ẍ, r̈, θ̈, η̇, ξ̇, ζ̇, η̈, ξ̈, ζ̈

}T [9]

where x and y are, respectively, the generalized position and
derivative vectors and (η, ξ, ζ) are the three transformation an-
gles. The applied force components from Eq. [4] are substituted
for the mass center acceleration components in Eq. [9], and the
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398 P. K. GUPTA

angular accelerations are computed in Eqs. [6] from the applied
moments. These angular accelerations are then combined with
the derivative of matrix equation establishing the relationship be-
tween the angular velocity and rate of change of transformation
angles (Gupta (6)) to arrive at the values of second derivative of
the transformation angles in Eq. [9].

The above vectors are written in terms of polar components
for a single rolling element. The vector length can be expanded
to include a set of 12 equations for each rolling element. For the
cage and races, similar components may be defined in a Cartesian
system. The set of first-order equations can then be numerically
integrated to obtain a generalized real-time dynamic simulation
of rolling bearing performance.

Computation of applied forces and moments is divided into
three parts: normal forces, friction or traction forces, and then
computing moments about the element mass center generated by
the interacting forces. Normal forces are computed by a straight-
forward geometric interaction analysis, which determines the ge-
ometric interaction between the interacting elements and then
uses a force deflection relation, as outlined by Harris (2), to com-
pute the normal force. Similarly, relative velocity or slip vectors
can be derived from the velocities of the interacting elements and
then a traction–slip relation may be used to compute the applied
traction forces (Gupta (6)). Once the forces are determined, the
applied moments are a simple cross-product of the position vec-
tor locating the point of interaction relative to element mass cen-
ter and the computed normal and traction forces. A systematic
procedure for this computation is outlined in Fig. 8. Basically,
from the position vectors of two interacting elements A and B,
a relative position is computed. Then the geometry of the inter-
acting elements is subtracted to compute the geometrical interac-
tion. This geometrical interaction essentially represents the elas-
tic deformation of the interacting elements that are contacting
each other. Knowing the elastic deformation, a load deformation
model, such as a Hertzian point contact or a similar line contact
model (Harris (2)), is used to compute the applied loads. Simi-
larly, from the relative velocity of the interacting elements a slip
component, tangential to the plane of contact, is computed. This,
along with the contact stress corresponding to the computed nor-
mal load, is input into a lubricant traction model to compute a
traction coefficient, which is a ratio of the traction (or friction)

Fig. 8—Generic architecture of interaction model and applied load com-
putation.

force to the applied normal load. Thus, the applied traction force
is computed. Finally, a cross-product of position vectors locating
the point of interaction and the applied load vectors yields the
applied moment.

Perhaps the most important parameter that controls the dy-
namic behavior of a rolling bearing is traction between interact-
ing bearing elements. The subject has been the main driver for
extensive research in modeling frictional interactions, lubricant
film formation, and elastohydrodynamic lubrication over the last
several decades. It has been well established that in a concen-
trated rolling sliding contact the traction coefficient is dependent
on relative sliding or slip velocity between the interacting ele-
ments. In addition, the lubricant properties and rheology play a
dominant role. In a simplistic fashion, Gupta (6) has promoted a
simple hypothetical model, based on the early works of Kragel-
skii (7). Based on experimentally observed traction/slip behavior
of a wide range of liquid and solid lubricants, the following alge-
braic equation is proposed to define the traction coefficient as a
function of slip velocity:

κ = (A + Bu) exp (−Cu) + D [10]

where κ is the traction coefficient at a slip velocity, u, and A, B,
C, and D are empirical constants, normally derived from experi-
mental traction data.

This simplified model works very well for most solid lubri-
cants, where the traction coefficient is relatively insensitive to
rolling velocity and contact pressures. It can also be used for
liquid lubricants at a given rolling velocity and contact pressure
when the model coefficients are fitted to experimentally observed
behavior.

More realistic and sophisticated models are available from the
past work on lubricant film formation and the mechanics of elas-
tohydrodynamic lubrication. There are really two physical mech-
anisms that are taking place in a rolling/sliding contact. First, a
lubricant film is formed by hydrodynamic action between two
elastically deformed surfaces under the applied contact pressure.
The lubricant is then sheared in the contact zone and a trac-
tion force results. Thus, computation of traction consists of two
parts: computation of the film thickness and then solution of the
combined thermal and mechanical problem in the contact zone
to compute traction. The lubricant hydrodynamic equations have
been solved for both line and point contacts and the solutions are
curve-fitted to readily usable formulae (Cheng and Sternlicht (8);
Cheng (9); Hamrock and Dowson (10)). For modeling traction, a
somewhat simplified approach is to assume Newtonian behavior
of the lubricant in the high-pressure contact region and compute
traction by solving the flow equation with prescribed surface ve-
locities and temperatures (Kannel and Walowit (11)). The model
is based on the following equations:

Energy equation: K
∂2T
∂z2

= −τṡ [11a]

Geometric compatibility:
∂u
∂z

= ṡ (τ,p,T) [11b]

Constitutive equation: ṡ (τ,p,T) = τ

µ (p,T)
[11c]
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Rolling Bearing Modeling 399

where K is thermal conductivity, T is absolute temperature, τ is
shear stress, ṡ is the shear strain rate, µ is lubricant viscosity, p is
pressure, u is the lubricant velocity, and z is the coordinate across
the film.

The above equations are solved for shear stress and tempera-
ture distribution across the film; the shear stress is then integrated
over the contact area to compute the total traction force. The pri-
mary input to the model is the viscosity–pressure–temperature
relation in Eq. [11c].

In the Newtonian model, the viscosity varies exponentially as
a function of both pressure and temperature. Thus, at very high
pressures the Newtonian model yields extremely high viscosities,
such that the lubricant tends to behave as a solid rather than as
a fluid. Under such conditions, the Newtonian model may yield
unrealistic traction behavior. To better simulate the lubricant be-
havior under such conditions, a viscoelastic model has been pro-
posed (Johnson and Tevaarwerk (12); Bair and Winer (13)). In
such models a shear stress/strain rate equation is introduced in
addition to the viscosity relation used in the Newtonian model:

ṡ = 1
G
∂τ

∂t
+ τo

µ
f

(
τ

τo

)
[12]

Here G is the shear modulus, τ is the shear stress, and τo is de-
fined as a critical shear stress. Two forms of the shear stress func-
tions have been proposed (Johson and Tevaarwerk (12); Bair and
Winer (13)):

f
(
τ

τo

)
= sinh

(
τ

τo

)
[13a]

f
(
τ

τo

)
= tanh−1

(
τ

τo

)
[13b]

Computation of shear stress distribution through the lubricant
film with the viscoelastic model requires integration of a differen-
tial equation (Gupta, et al. (14)), whereas the Newtonian model
may be implemented almost in closed form (Gupta (6)). In ei-
ther model there are three model coefficients: reference viscos-
ity, pressure–viscosity, and temperature–viscosity coefficients in
the Newtonian model, and effective viscosity, shear modulus, and
critical shear stress in the viscoelastic model. Because actual mea-
surement of these constants is extremely difficult, they are gener-
ally derived by regression analysis of experimental traction data
(Gupta, et al. (14), (15)). A very extensive review of elastohy-
drodynamic lubrication, the associated properties, and their mea-
surement was presented by Jacobson (16).

For modeling the performance of rolling bearings, both of
the above models work fairly well for a wide range of operating
conditions. Under very high contact pressures and high speeds,
however, the Newtonian model demonstrate a very high traction
slope in the low-slip region, the validity of which has been contro-
versial; this high traction slope also results in some numerical dif-
ficulties when integrating the equations of motion. The viscoelas-
tic model is generally free of such problems, but it does require
significantly more computing effort because a differential equa-
tion has to be solved through the lubricant film for each contact
in the bearing at each time step. The continually increasing com-
puting speed of modern computing systems has certainly helped

in executing very computationally intensive models in reasonable
lengths of time.

In more recent works, Larsson, et al. (17), (18) have experi-
mentally measured some of the lubricant properties, which enter
in the computation of lubrication traction, for a number of com-
monly used lubricants. The experimental investigations include
measurement of viscosity, pressure–viscosity coefficient using a
high-pressure viscometer, temperature–viscosity coefficient, bulk
modulus, thermal conductivity, and heat capacity. The measured
properties are presented in terms of readily usable empirical re-
lations as a function of operating conditions.

Development History

Computer modeling of rolling bearings dates back to the 1960s
when digital computing was becoming a reality with popularity
of large mainframe computing systems. Perhaps the first of the
computer codes to carry out analysis of a rolling bearing may be
credited to Jones (1), who implemented his analysis in a computer
code to predict load distribution, stiffness, and, most important,
fatigue life of a rolling bearing. The Jones (1) computer code
served as a primary tool for the design of rolling bearings. This
work was based on static equilibrium formulation; the centrifu-
gal forces and gyroscopic moments encountered at high speeds
were added as additional external forces and moments. The codes
were therefore called quasi-static. Because fatigue was the pri-
mary mode of failure for most rolling bearings at the time, the
Jones (1) code served the industry well. Somewhat in parallel
with Jones’s (1) work, Harris (2) also promoted quasi-static mod-
eling of rolling bearings and presented a fairly rigorous analysis of
interaction between rolling elements. Also, Poplawski and Mau-
riello (19) pursued modeling of skidding in lightly loaded ball
bearings. Just a few years later, Harris (20), (21) presented sub-
stantial work on frictional interactions at the rolling element to
race interface and skidding in ball bearings. In parallel, Poplawski
(22) extended his work on ball bearings to roller bearings, where
an attempt to model cage forces was also made.

With the continued advancement in the computer industry,
the 1970s started with a major thrust on computer modeling of
rolling bearing performance. Walters (4) presented a generalized
dynamics model to solve the differential equations of motion of
the cage in an angular contact ball bearing with constrained ball
motion and the model was implemented in a computer code,
BASDAP. Later, Gupta (23) extended this work to generalize
the ball motion with complete six degrees of freedom. Based on
quasi-static models, Mauriello, et al. (24) presented a somewhat
simplified cage analysis. Rumbarger (25) modeled cage deforma-
tion as a function of thermal expansion and quasi-static motion
of rollers in a high-speed roller bearing. Perhaps the most signif-
icant advancement of quasi-static models is credited to the work
of Crecelius and Privics (26) at SKF and the related publication
of a very extensive computer code, SHABERTH, which incor-
porated simultaneous operation of several bearings; in addition,
transient thermal analysis was also incorporated with the objec-
tive of presenting a complete mechanical and thermal systems
tool for rolling bearing design. SHABERTH is still widely used in
the industry, as discussed later. In the dynamics area, Kannel and
Bupara (27), based on the earlier work of Walters (4), further
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400 P. K. GUPTA

investigated the dynamics of cage motion and its coupling with
elastohydrodynamic lubrication at the ball–race contacts. With
continued interest in modeling real-time dynamic effects in
rolling bearing, Gupta (28) integrated the generalized ball mo-
tion (Gupta (23)) with the cage differential equations of mo-
tion; in addition, cylindrical roller bearings were included in the
model along with the angular contact ball bearings; the work
was published as a generalized dynamics tool for both ball cylin-
drical roller bearing, Dynamics of Rolling Element Bearings
(DREB). Soon after implementing this generalized model to
practical problems, the required computing effort imposed a se-
vere strain. After investigating the detailed frequency response
of a rolling bearing, Gupta (29) introduced a time-varying equi-
librium constraint to filter out the very high-frequency compo-
nents and thereby provide a substantially increased time step
size; the work was implemented as a faster version of DREB,
RAPIDREB. RAPIDREB provided bearing performance sim-
ulations over a greatly increased time domain, as required for
graphics animation of bearing element motion. Soon after the
DREB development, Brown, et al. (30) undertook a task to de-
velop a roller bearing dynamics code, TRIBO1, especially for
cylindrical roller bearings in a gas turbine engine, and Conry (31)
worked on a dynamics model for lightly loaded cylindrical roller
bearings.

Further development of quasi-static models continued at SKF
with the work of Ragen (32), who incorporated gears in the quasi-
static systems code and published an extended code, TRANSIM.
More specialized versions of computer codes aimed at modeling
cylindrical roller bearings include CYBEAN, published by Kleck-
ner, et al. (33), and SPHERBEAN for spherical roller bearings by
Kleckner and Privics (34), also at SKF.

Advancement in computing hardware continued rapidly in the
1980s when personal computers appeared and demonstrated sig-
nificant potential for scientific computing. Also, advancements
in supercomputers were significant; vectorization of sophisticated
computationally intensive codes resulted in significant reduction
in computing effort. With such advancements in computing hard-
ware and processing speed, Gupta (6) further generalized his for-
mulations for rolling bearing performance simulations and pub-
lished a completely new code, Advanced Dynamics of Rolling
Elements (ADORE). Faster computing permitted integration of
the equations of motion over larger time intervals, which led to
better insight into the rolling/sliding interactions and simulation
of wear in rolling bearings (Gupta and Forster (35)). The geo-
metrical generalizations, on the other hand, permitted modeling
of geometrical imperfections and optimization of manufacturing
tolerances (Gupta (36), (37)). In addition to ball and cylindrical
roller bearings, the geometrical generalization led to the simu-
lation of tapered roller bearings (Gupta (38)). In parallel with
the above work, Meeks and Karen (39) and Meeks (40) devel-
oped models for ball bearing cage, or separator, dynamics and
published a code, SEPDYN. In the quasi-static area, Sague (41)
published a code, PREBES, and Poplawski (42) published a com-
puter model, COBRA.

Along with the advancement in computer processors, the sub-
stantial advancement in materials manufacturing technology con-
tributed to a notable enhancement of the fatigue life of rolling

bearings. As a result, higher speeds, loads, and temperatures be-
came more practical for rolling bearings, and this led to an in-
creased interest in real-time dynamics models for rolling bearing
performance simulation. With due recognition and limitation of
the Newtonian models to model traction in rolling/sliding con-
tacts, Gupta (43) incorporated a viscoelastic model in the bearing
dynamics code, ADORE. This could only be possible by the ad-
vancing computing speed, because the model requires rather ex-
tensive computing in each contact in the bearing. With the real-
time simulation of a bearing overall several shaft revolution now
becoming a routine, Gupta (44) took the simulated generalized
motions of bearing elements, assembled them in an animated dis-
play of bearing element motion, and presented a sister code, An-
imated Graphics of Rolling Elements (AGORE). Meeks, et al.
(45) and Meeks and Polendo (46) also made advancements of the
code SEPDYN and published the codes BASDREL and BAB-
ERDYN. Aramaki (47) used the quasi-static equilibrium equa-
tions along with approximated acceleration on the rollers to sim-
ulate roller slippage in significantly reduced computing effort.

In more recent years, advancement in rolling bearing dy-
namics modeling continued with varying approaches. Stacke, et
al. (48) and Stacke and Fritzson (49) at SKF used multibody
techniques, with particular emphasis on contact problems be-
tween bearing elements, to model overall dynamic behavior of
rolling bearings. This resulted in the computer model BEAr-
ing Simulation Tool (BEAST). Similar to other dynamic mod-
els, BEAST integrates a set of differential equations to obtain
real-time simulation of bearing performance. By inserting multi-
ple spring and dashpot elements, BEAST generates appropriate
transfer functions to model bearing interaction with external sys-
tem. Presently, BEAST is used internally within SKF for bearing
dynamics performance simulation. Gupta (50) undertook a ma-
jor initiative to model thermal interactions between bearing ele-
ments and further advanced the bearing model ADORE for the
modeling effect of thermal interactions in overall bearing dynam-
ics. The heat generated at the various interactions is used to com-
pute a temperature field, which affects bearing geometry, which
in turn alters the interacting loads and dynamics of bearing ele-
ments. Based on the works of Nakhimovski (51), (52), BEAST
was also advanced to include thermal interactions and flexibil-
ity in bearing elements, such as the cage and the bearing races.
A more recent version of BEAST and the associated multibody
approach was discussed by Ioannides, et al. (53). Ghaisas, et al.
(54) examined the role of cage pocket clearances in cylindrical
roller bearings and demonstrated how the cage forces and result-
ing cage motion are altered as the pocket clearances increase.

Modeling the effect of surface defects on rolling bearing dy-
namics is a relatively new area of interest. For some critical ap-
plications the time to bearing failure once a fatigue spall or other
defect develops at the race surface has been of significant inter-
est in avoiding catastrophic situations. Gupta (55) used the arbi-
trary geometry features in ADORE to model raceway defects as
a varying race surface radius with a prescribed defect shape and
size. The defect geometry is thereby correlated to overall bearing
dynamics. Ashtekar, et al. (56) used a modified force displace-
ment relation, corresponding to the defect geometry, to compute
the applied forces while integrating the differential equations of
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motion; their work also provided an excellent review of the avail-
able literature on this subject. Fritzson, et al. (57) have also pre-
sented modifications to the contact mechanics model to model
surface defects, as induced by fretting and fatigue. Modeling cage
flexibility while integrating the equations of motions of the bear-
ing elements is the subject of the very recent work by Weinzapfel
and Sadeghi (58). A Newmark-type implicit integration method
combined with a Newton-Raphson iterative technique has been
recently used by Leblanc, et al. (59) to model the dynamics of
a roller bearing with flexible races. With particular emphasis on
prediction of rolling element slip and the resulting cage forces in
planetary application of rolling bearings, Houpert (60), (61) has
published a code, CAGEDYN, to model overall bearing dynam-
ics.

Increasing interest in modeling real-time dynamics of rolling
bearing is clearly evident from the available literature over the
last several of decades and continued publication of new material.
The original classical work of Harris (2) is now in its fifth edition
(Harris and Kotzalas (62), (63)). Practical implementation of very
sophisticated mathematical techniques is gradually becoming a
reality as the available computing power continually unfolds.

Presently Available Codes

Though the results of a large number of development activ-
ities are publicly available as research papers and reports, the
related software tools fall into two categories: codes that are
developed and used internally within an organization and codes
that are commercially available as software tools for modeling
the performance of rolling bearings. Indeed, a lot of technology
and expertise resides within the rolling bearings manufacturing
companies, bearing designers, and bearing users such as gas
turbine engine manufacturers and a wide range of aerospace
organizations. These codes offer practical implementation of
years of development experience and expertise to a broad range
of applications. The organizations use the codes internally for ap-
plication support and development of new products. In the area
of commercially available tools, a number of computer codes
have been packaged with reasonably easy to use input–output
interfaces and they are offered as commercial software products.
A brief review of some of these tools is presented below.

A. B. Jones Bearing Analysis Software

The A. B. Jones Bearing Analysis Software, originally pub-
lished and marketed in the 1960s, is still used fairly widely for
bearing design in the industry. Perhaps the original codes, along
with some variations, are still available.

SHABERTH

SHABERTH is a very comprehensive systems level quasi-
static model. It was originally developed by Crecelius and Pirvics
(26) at SKF under contract with the U.S. Air Force. The code per-
forms a detailed quasi-static analysis for a multiple bearing and
shaft system, including some thermal effects. Because the origi-
nal version of the code was in the public domain, varied versions
of the code have also been developed and made available by dif-
ferent organizations.

COBRA

COBRA is a multi-bearing quasi-static systems model. It can
model a number of rolling bearings simultaneously with either a
rigid or flexible shaft. The code can interface with the finite ele-
ment code ANSYS to integrate race fit analysis for both interfer-
ence fits and thermal gradients. The program has been developed
by Poplawski (42) and it is presently marketed by J. V. Poplawski
& Associates. Information of the code is readily available (67).

ADORE

ADORE, developed by Gupta (6), is a fully dynamic model.
The classical differential equations of motion are integrated as
a function of time to provide real-time dynamic performance
simulation of rolling bearings, including ball, cylindrical, and ta-
pered roller bearings. The code also includes a quasi-static mod-
ule, which is used to compute the initial conditions when integrat-
ing the differential equations of motion. The code is marketed by
Pradeep K. Gupta Inc., and detailed information is available (68).

Current Limitations and Future Requirements

Lubricant Traction

Lubricant traction in a rolling/sliding contact has been iden-
tified as a key parameter that controls the dynamic behavior of
a rolling bearing. Thus, realistic input to model the lubricant ac-
curately is a key to reliable prediction of bearing performance.
Due to rather complex behavior of the lubricant as a function
of operating temperatures and pressures, the effective lubricant
properties are generally derived by back-fitting a model to actual
experimental data via a regression analysis. Because these trac-
tion experiments require specialized test rigs (Wedevan (64)), the
number of lubricants for which such data are available is few.
To cover a wider application domain, it is essential to expand
these databases for both fully formulated lubricating oils and the
base oils used in greases. In addition to modeling the base oil in
greases, other effects that contribute to traction and resistance to
rolling element motion have yet to be explored.

Data on solid lubricants is even more limited in comparison
to liquid lubricants. Thus, simulation of solid lubricated rolling
bearings is greatly restricted. With the recent innovation of ce-
ramic rolling bearings, the development of traction data for solid
lubricants and coated and unlubricated surfaces is a key to realis-
tic modeling of these advanced bearing concepts.

Thermal Interactions

Although the heat generated in each individual contact in a
rolling bearing can be computed fairly well once the traction or
friction behavior in the contact is defined, most models are lim-
ited in modeling the transfer of this heat to rest of the system.
Perhaps an integration of the thermal finite element steady-state
and/or transient models with the bearing dynamics model is es-
sential to model the combined mechanical and thermal behavior
of a rolling bearing. A large difference in timescales for the ther-
mal and mechanical problems makes this a numerically difficult
task.
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Churning and Drag Effects

In oil-lubricated bearings filled with circulating lubricant,
there is a substantial drag and churning moment applied on the
bearing elements. A realistic simulation of these effects is essen-
tial for modeling both the applied forces and moments on the
bearing elements, as required in the equations of motion, and in
the computation of overall power loss in the bearing. In most of
the current bearing models the churning and drag models are still
based on the very simple models (Rumbarger, et al. (65)) based
on classical laminar and turbulent flows. Modern innovative tech-
niques of computational fluid dynamics (CFD) may be applied to
improve these models and therefore significantly enhance the dy-
namic simulation of a rolling bearing.

Code Language and Architecture

Most of the software tools for engineering computation used
today still employ FORTRAN language, the support for which
has substantially declined over the last decade. Furthermore, with
the advent of modern object-oriented languages, such as C++
and Java, most universities have withdrawn FORTRAN courses
from their academic curriculum. As a result, new engineers en-
tering the industry find it very difficult to work with FORTRAN
codes. Certain floating point processing and manipulation of mul-
tidimensional arrays are perhaps the two key elements that make
FORTRAN a very efficient language for engineering computa-
tion. Although there has been some effort in the development of
such capabilities for the modern computer languages, the current
limitations are viewed as significant constraints for the scientific
computing community. On the positive side, the object-oriented
languages make graphic processing and network computing ex-
tremely easy and powerful. Perhaps an effort to perform some of
the computing tasks, unique to FORTRAN, by innovative soft-
ware concepts in the modern languages may be worthwhile until
the standards for the modern languages are expanded to better
accommodate the engineering and scientific communities. A very
recent initiative by DynaTech Engineering (66) is one example
of an attempt to use Java for engineering computing related to
rolling bearing modeling.
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