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ABSTRACT

Suitable equilibrium constraints are introduced in the existing computer
code DREB to greatly increase the permissible time step size and thereby provide
bearing performance simulation over large time intervals within acceptable com-
putational effort. The modified code, RAPIDREB, has proven to be very efficient
in simulating ball bearing performance over several shaft revolutions. Hence,
simulation of the very low frequency components has been possible. The code
RAPIDREB is applied to a typical turbine engine ball bearing to examine cage
whirl and subsequent failure due to excessive wear of the cage surface interact-
ing with the guiding raceway.

INTRODUCTION

Computer simulation of the performance of rolling bearings has proven to be
a very effective means of designing some of the most advanced rolling bearing
systems. The available computer codes provide both a simple static equilibrium
solution and a full transient simulation obtained by integration of the differ-~
ential equations of motion of the various bearing elements. As reviewed by
Gupta (1) and Sibley and Pirvics (2), there have been a large number of programs
aimed at solving the static equilibrium problem with varying levels of sophistica-
tion. Dynamic simulation codes, however, have been rather few; the most noted
works have been due to Walters (3), Gupta (4-7) and more recently due to Brown
et al (8). Since the dynamic codes perform a real time integration of a large
number of differential equations of motion, the computational effort required
by any of the dynamic computer programs has been a practical limitation. This
is related directly to the nature of the model in the sense that the maximum
step size for the numerical integration of a system of differential equations
of motion is determined by the highest frequency present in the system, which
is often several orders of magnitude higher than the shaft rotational speed. In
order to simulate effects of the order of shaft speed, integration over a very
large time domain is required and since the maximum step size is limited by the
high frequencies, the computing costs, especially for very low speed applications,
have proven to be prohibitive. The primary objective of the present investigation
is to review the various time scales in the general behavior of a ball bearing and
by selectively suppressing the very high frequencies, develop a '"rapid version" of
the DREB (Dynamics of Rolling Element Bearings) computer program developed earlier
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by the author (4-7). This new version of the program has been designated as
RAPIDREB.

For a typical ball bearing the high frequency present in the system is
defined by the ball/race Hertzian contact. If the ball is free to translate,
vibratory motion corresponding to this natural frequency has been observed.
Also, a relatively high frequency is also associated with the kinematics of ball
motion (9). In order to suppress these high frequencies the ball mass center
may be constrained in a suitable manner. Once this is done the step size can be
made relatively large and integration over a prescribed time domain can be
carried out much more effectively.

This paper considers an equilibrium constraint, where the position of ball
mass center at any instant is determined by satisfying the radial and axial
equilibrium of forces on the ball. Thus the ball now moves freely in a four-
degrees-of-freedom system, i.e., orbital motion of ball mass center, and the
three rotations about the mass center. The constraint is very similar to the
one used by Walters (3) except that the equilibrium is performed at each time
step and the generalized dynamics of ball/cage and cage/race interactions is
preserved. After discussing some general time scales in a ball bearing an over-
view of the computer program RAPIDREB will be presented below. The capabilties
of RAPIDREB are demonstrated by simulating cage whirl in an engine bearing.

GENERAL TIME SCALES IN BALL BEARING DYNAMICS

The characteristic frequencies in the general dynamic performance of ball
bearings normally cover a wide spectrum. Frequencies associated with the elastic
contact phenomenon are on the high end while the shaft speed is on the low end
of the spectrum. Fortunately for most operating environments the high frequencies
are several orders of magnitude greater than the frequencies of the order of
shaft revolution speed and therefore it is relatively easy to constrain the motion
to eliminate all the high frequencies in order to look at the low frequencv
phenomenon in deoth. To understand the phvsical mechanism behind each frequencv
the basic model for each interaction and the fundamental kinematics of ball motion
must be reviewed.

Ball/Race Interaction

The normal contact loads at the ball/race interaction are computed by the
Hertzian elastic contact theory. For small changes in load the non-linear
Hertzian load-deflection relation can be suitably modeled as a linear spring.
Now if the ball is free to translate arbitrarily a vibration frequency corres-
ponding to this spring will be observed. This has been discussed in depth by
Gupta et al (9). To review the phenomenon briefly Figure 1 shows typical axial
and radial components of ball mass center as it travels in its orbit. Two dis-
tinct frequencies are seen in these acceleration patterns; the high frequency
component corresponds to the elastic contact phenomenon, while the low frequency
has a kinematic significance. For most ball bearings, depending on the bearing
size, the elastic contact frequency is in the range of 1 to 50 kHz. The low
frequency whose axial and radial components are 180 degrees out of phase, has
been termed as a kinematic frequency (9) since it is a strong function of race
curvatures and it is proportional to square root of ball/race contact load.
Again the actual frequency for a given bearing depends on the geometry of the
bearing and the applied conditions but the general range is from 500 Hz to 10 kHz.

Ball/Cage and Race/Cage Interactions

The dynamics of ball/cage interaction can be quite complicated depending on
the operating conditions and the ball pocket clearances. For a simple thrust
loaded condition with gravity acting along the bearing axis, the cage weight
will be supported uniformly by all the balls and therefore hall/cage contact
will be established in each pocket. Now, if the cage is free to translate axially,
a vibratory motion of the cage relative to the balls, corresponding to the elastic
spring which models the ball/cage contact, will be observed. Such a phenomenon is
demonstrated in Figure 2. Again the frequencies will be generally high compared
to the shaft rotational speed.
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In most instances the ball/cage contacts may be of impulsive nature and the
total time of contact may be very small. A typical example is presented in
Figure 3. Such impulsive contacts will produce definite discontinuities in the
motions of both the balls and the cage and considerable care will be required in
integrating the equations of motion.

Low Frequency Components

This class of motion basically contains frequencies of the order of race
angular velocities. The components of interest generally include ball angular
velocity, ball orbital velocity, ball pass frequency (rate at which a given point
on the race is passed by the balls), etc. All of these frequencies may not be
constant depending on the operating conditions. In fact, the variation in ball
angular velocity may sometimes be quite large. This can be easily illustrated
if the equations of ball angular motion are written in a coordinate frame rotating
with a velocity 6 which is also the ball orbital velocity:

le = Gl
Iwz - Iw36 = G2
Iw3 + Iwze = G3

-> >
where I is the ball moment of inertia, w is the angular velocity and G is the
applied moment vector.

If, for instance, the applied moment is zero, then wy will be constant and
Wy and Wy will be governed by

wy = m36 =0

W, + w0 =0

or

assuming & to be constant. .

Thus both w, and w, will have a cyclic variation with a frequency of 8.

The nature of thé applied moment € and’ its dependence of ball angular velocity
will of course greatly influence the ultimate motion of the balls.

For any given bearing application all of the above characteristic motions
must be clearly understood before considering any constraints on the ball motion.
In particular the knowledge of difference between the various components will be
very useful and two classes of problems may be considered:

Class I: All frequencies are of the same general order

Class II: There is a distinct difference between the "very low"
and "very high" frequency components.

Class I will be relevant for a relatively large bearing operating at very
high speeds and Class II will apply to most small to moderate size bearings in
a wide operating environment and large bearings operating at very low speeds.
For the Class I system a generalized motion of each element must be determined
as done by the author (4-7) in the original DREB program. However, for Class II
applications certain constraints can be imposed and applications falling in this
class are the subject of this paper.

77



OVERVIEW OF THE RAPIDREB CODE

The computer code RAPIDREB is an enhanced version of the original DREB
program. The key enhancement consists of suppressing the very high frequencies
in the performance simulation of ball bearings. Although similar modifications
of DREB may be considered for roller bearings, RAPIDREB considers ball bearings
only. If the race angular velocity is very small compared to the high frequency
motion, a suppression of the high frequency components will not affect the com-
ponents of the order of race angular velocity. Assuming that the vibratory
motions being suppressed does indeed have frequencies much greater than the race
angular velocities, two means of suppression may be considered, e.g., ball
motion constraints and suitable damping.

Ball Motion Constraints

The very high frequency motion results from ball vibration between the two races.
As discussed earlier, both the elastic contact frequency and the kinematic fre-
quency represent the motion of ball mass center relative to the supporting races.
If the applied load on the bearing is free of any high frequency vibrational com-
ponent, the amplitudes of the ball vibration are generally small and the resulting
changes in contact loads are fairly insignificant when compared with the nominal
loads. It may therefore be reasonable to constrain the ball such that equilibrium
of all normal contact forces -acting on the ball including the centrifugal forces
is satisfied at every instant of time. The traction forces, being quite small
compared to the normal forces, may be neglected in the equilibrium equations.
Such constraints are reasonable for all static applied loads and constant races
speeds. They are also applicable to time varying loads and speeds provided the
frequency of such variations is very small compared to the characteristic ball/
race vibration frequencies. Thus moderate race accelerations and synchronous
loading due to unbalance can be satisfactorily treated within the realm of such
equilibrium constraints.

It is true that the process of imposing the above constraints is similar to
obtaining the conventional quasi-static solutions at each time step and hence a
set of non-linear algebraic equations has to be solved at each step. This may
appear to be quite time consuming but even for relatively large steps, allowable
by ball/race traction phenomenon, the changes in the equilibrium conditions are
rather small and therefore the convergence of the equilibrium equations is very
rapid. Thus a small increase in the computational effort per step substantially
outweighs the permissible increase in step size as compared to the generalized
case where all acceleration components are permitted.

Damping Considerations

There may be some damping considerations which can assist in eliminating
certain high frequencies. It is true that actual damping at any contact inter-
face in the bearing is quite small and therefore the introduction of any damping
will be "fictitious" with the prime objective of eliminating the high frequency
response without significantly altering the very low frequency behavior.

Any contact interface can be modeled in terms of a spring with stiffness
k (N/M) and a dashpot with damping C (NS/M) as shown in Figure 4. The contact
stiffness will be known from the Hertzian contact parameters at the particular
contacts and the damping coefficient will be the required input. Perhaps speci-
fication of damping will be best in terms of a damping ratio C/C_, where C_ is
called critical damping (10) corresponding to the undamped naturdl frequengy of
the system.

Damping ratio ¢ = C/Cc

where C = 2mw
c n

Ak

w =Y\ =

n m
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Thus ¢ can be specified for the ball/race, ball/cage and cage/race inter-
faces. For the purpose of "real" damping r will be very small for most steels
but for certain nonmetals used for fabricating the cages it may be appreciable.
In any event any non-zero value of [ will only effect the general response in the
neighborhood of the undamped natural frequency wy (10) and the response at very
low frequencies will be practically unchanged.

RAPIDREB OQutline

A schematic outline of the RAPIDREB code is presented in Figure 5. For a
prescribed bearing and operating environment a conventional quasi-static analysis
is first performed to compute the initial conditions for the integration of the
differential equations of motion. With these initial conditions a real time
simulation is then obtained by numerically integrating the equations of motion.
All the generalized six-degrees-of-freedom are maintained except for those on
the ball mass center, whose axial and radial positions are determined by the
equilibrium constraint. Since this constraint is applied at each time step,
dynamic variations in applied load are fully treated so long as such variations
do not occur at very low frequencies of the order of those being suppressed by
the constraint. :

The option for fictitious damping is included in the input materials data,
where arbitrary damping ratios can be prescribed for any interaction. RAPIDREB
also offers the option of bypassing the equilibrium constraint and thereby
reverting back to a form equivalent to the original DREB program. Thus generalized
dynamic simulations may also be obtained to study the effect of damping and other
dynamic factors in the high frequency range.

Tn addition to the above RAPIDREB contains the option of exercising a number
of different integrating algorithms consisting of both explicit Runga-Kutta type
formulae and the implicit predictor-corrector type schemes. Further details are
described elsewhere (11).

TYPICAL RESULTS

RAPIDREB is executed for a number of different bearings and it is found that
the reduction in computational effort by exercising the equilibrium constraint can
range from a factor of 5 to 15 over the effort required by the DREB program.

For very simple configurations, such as an angular contact ball bearing with
pure thrust load, this factor may be as high as 100. However, it is found that
the fictitious damping option does not provide any significant reduction in com-
putational effort, a factor of two is perhaps a realistic upper limit.

In order to demonstrate the general capabilities of RAPIDREB performance
simulations over several shaft revolutions are obtained for a high speed engine
bearing. Details of the bearing and operating conditions are briefly discussed
below before presenting the performance simulations.

Bearing Geometry

The geometry of the bearing is shown in the computer output in Appendix A.
It is a 100 mm bore ball bearing with a steel cage guided on the inner race.
The design corresponds to an actual test bearing.

Lubricant Traction Models

Conventional lubricant with the MIL-L-7808 specification is assumed. The
traction behavior of this lubricant has been studied fairly extensively and the
model in the original DREB program has been demonstrated to show a reasonable
fit with the experimental data. The model is also built into RAPIDREB and
appropriate input option is exercised to select the MIL-L-7808 model.

For the ball/cage and cage/race interfaces a hypothetical traction model
(see Appendix A) is used to compute the friction forces when a metal contact
takes place.

79



Operating Conditions

To simulate typical test conditions, the following operating conditions are
assumed :

Axial load = 18,000 N
Radial load = 4,500 N
Inner race speed = 20,000 RPM
Outer race speed = 0
Operating temperature = 330°K

Gravity acts normal to the bearing axis. Radial and axial equilibrium constraints
on ball motion are assumed to eliminate the high frequency ball/race vibrations.
Also the quasi-static solutions are used to determine the initial conditions,

Performance Simulations

Performance simulations for the engine bearing at the above conditions are
obtained over seven shaft revolutions and hence definite steady state behavior
can be easily understood. Typical initial parameters are illustrated in the
computer output presented in Appendix A. Results presented below are in terms
of computer plots of dimensionless variables as provided by RAPIDREB. Appropri-
ate dimensional values may be obtained by using the scale factor contained in
the computer output in Appendix A,

As might be expected in case of combined axial and radial load, the ball
load and contact angles go through a cyclic variation with a frequency corres-
ponding to the ball orbital velocity. This is seen in Figure 6 where over three
wavelengths of variations corresponding to over seven shaft revolutions are shown.
Also the spin/roll ratios in Figure 6 show that the race-control hypothesis does
not hold and definite relative spin velocities develop in steady-state. Ball angular
velocities demonstrate an interesting effect, see Figure 7. Since the initial
quasi-static solutions do not allow for the gyroscopic slip and the exact equili-
brium of gyroscopic moments, the ball immediately tends to slip about the
transverse y axis due to gyroscopic moments. This alters the x and z components
also and it takes approximately two shaft revolutions for the angular velocities
to develop some steady state pattern and satisfy the gyroscopic slip as permitted
by the lubricant characteristics. The ball/cage interactions show that about one
collision in each pocket takes place per revolutions of the cage and the ball
drives the cage (ball/cage contact angle of 180 degrees) for part of the revolution
and gets driven by the cage (contact angle of zero) for the remaining part. This
is seen in Figure 8. The ball/cage forces seen in this figure are really the
collision forces and the hydrodynamic forces, being quite small compared to the
collision forces, are not seen in the figure. However, the ball/cage approach
relative to the radial pocket clearance clearly demonstrates the transition from
hydrodynamic to metal contact.

The race/cage interaction is very dynamic and interesting to note. Figure
9 shows the race/cage force variations at the two lands (labeled 1 and 2) on
either side of the balls. Initially the collision forces on both lands are identi-
cal but when appreciable coning motion of the cage develops, the forces on the two
lands begin to differ; this is more clear from the traction force curves. The
ultimate behavior to note is that the race/cage collisions are really very close
together in time in steady state. Also the magnitude of the force is fairly
large (~1800 N). This means that the cage will steadily be in contact with the
race with a relatively large force, and some cage wear problems may be expected.
This is seen by the steady circular orbit of the cage mass center in Figure 10
with the orbit radius equal to the cage/race radial clearance. This effect has
indeed been confirmed experimentally (12) and the experimental results will soon
be documented elsewhere (13).
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Corresponding to the above race/cage collisions considerable radial chatter
of the cage mass is observed, as shown in Figure 11 in terms of the cage mass
center velocities. Excessive whirl is indicated by the increased orbital velo-
city. The coning motion is demonstrated by the angular velocity variations in
Figure 12. The deviation of cage angular velocity from the initial epicyclic
angular velocity (see component x) indicates substantial skid in the bearings
due to excessive rubbing of the cage at the cage/race interface. The cage whirl
and skid are sometimes better understood in terms of the cage orbital to angular
and cage angular to shaft angular velocity ratios plotted in Figure 13.

Finally, the variations of bearing torque, power loss, and the cumulative
load slip integral are shown in Figure l4. The initial bump in the torque curves
correspond to the gyroscopic slip of the balls as discussed above and the steady
noise is a result of the ball/cage and race/cage collisions.

SUMMARY

The existing Dynamics of Rolling Element Bearings (DREB) computer program
has been enhanced to selectively suppress the very high frequency vibratory
motion of the balls in an angular contact ball bearing and thereby provide the
added capability of investigating the low frequency phenomena in some depth.
With such an enhancement a considerable increase in the maximum permissible time
step size has led to bearing performance simulation over several shaft revolu-
tions within reasonable computing effort.

In order to demonstrate the capabilities of RAPIDREB, performance simula-
tions are obtained for a typical high speed engine bearing with a combined thrust
and radial load (thrust to radial load ratio of 4) over more than seven shaft
revolutions. The test example consists of a 100 mm bore ball bearing operating
at 20,000 rpm with a thrust load of 18000 N and a radial load of 4500 N. The
bearing uses a steel cage guided on the inner race. It is shown that for such
an operating environment the cage develops appreciable whirl velocity and in
steady state a continued metal contact at the guiding land is established.

Hence a definite possibility of cage wear at the guiding surface is simulated.
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APPENDIX A

TYPICAL COMPUTER OUTPUT FOR THE 100 mm ENGINE BEARING
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AsmsEscEEELaCES

DYNAMTCS 0
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F ROt LING
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~A REAL TIME PFRFORMANCE SIMULATION=
(VERSTON RARIDRER,0)

PRADFFP K, GUPTA
MECHANTCAL TECHNOLNGY INCORPORATED
968 ALAANY~SHAKER ROAD
1LATHAMe NFW YORK
U, Se A

LR N R N S S S A
.

. BEARING TYPE -~ BALL SPEC CODE -~ 100MM ENGINE BRG MOD CAGE 18/4,5KN 20KRPM .
. .
R R R I I O I S
BEARING GEOME TRY

BORE (M) = 1,00000E~01 OUTER RACE SHRINK FIT (M) = 1,00000E~05

OUTSIDE DIAMETER (M) = 1,80000E-01 INMER RACE SHRINK FIT {M}) = 5,00000E~05

SHAFT INNER DIA (M) = 2,00000E-02 HOUSING NUTER DIA (M) = 2,05000€-02

BALL OIAMETER (M) = 1,905n0E-~02 NUMBER NF BALLS L 1

PITCH DIAMETER (M} = 1,40000E~01 OUTER RACE CUR FACTOR s 5,20000E-0)

CONTACT ANGLE (DEG) = 2,50000E¢0) INNER RACE CUR FACTOR = ?.400005*0]

END PLAY (M) = 9,66105E~04 DIAMFTRAL PLAY (M} & 2,14180E~04
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CAGE OUTER DIA (M) = 1.4RB0ONE~0) CAGE NUTER DIA CLS (M) = T,00000E-03
CAGE INNER DIA M)} = 1,29700E-01 CAGE TNNFR DIA CLS (M) = 3,00000£=-03
EFF CAGE WIDTH (M) = 2,73000£-02 DIA RE/CAGE CLEARANCE (M) = 8,26000E=04
GUIDANCE GUIDING RACE GUIDING CAGE EFF  LAND CAGE MALF
TYPE RADIUS (M) RANTUS (M) WIDTH (M) WIDTH (M)
GUIDING LAND 1 2 6.62350£-02 6.48800F =02 4,00000€-03 1,36500£-02
GUIDING LAND 11 2 6,42350€~02 6,4B500F~02 4,00000£~03 1,36500E-02
LUBRICATION DETAILS
1. ROLLING ELEMENT/CAGE AND RACF/CAGE PARAMFTERS -w-
INTERACTION LUB VI&CNCITY MAX FILM
COnE {N®S/Mmuup) {M)
ROLL ING ELEMENT/CAGE INTERACTION 1 To12406F=03 4,00000E-04
RACE/CAGE INTERACTION i T.12466F=01
RE/CAGE DRY CONTACT TRACTION PARAMETERS ==
CRIT FILM THICKNESS (M) = 5,00000E-07
TRAC COEFF AT ZERO SLIP = 0, MAXTMUM TRAC COEFF = 2,00000E-02
TRAC COEFF AT INFINITE SLIP = 1,60000€~-02 SLIP AT MAX TRAC (M/5) = 1,00000E+00
CAGE/RACE DRY CONTACT TRACTION PARAMETERS ==
CRIT FILM THICKNESS (M) = 5,00000€-07
TRAC COEFF AT ZERO SLIP = 0. MAXTMUM TRAC COEFF = 2,00000E-02
TRAC COEFF AT INFINITE SLIP = 1,60000E-02 SLIP AT MAX TRAC tM/s) = 1.,00000E+00
2. ROLLING ELEMENT/RACE PARAMETERS (TRACTION CODE = 3) ===
FILM THICKNESS CODE = 2 CRIT FILM THICKNESS (M) = 1,00000E-07
INLET YEMP (DEG-K)} = 3,30000€+02 PR=VIS COEFF (Mee2/N) = 1,01447E-08
INLET VIS (N#S/Mwu2) = 7,12466E-03 TEMP-VIS COEFF (DEG=K) = 2,85205E+03
THERMAL COND (N/S/DEG-C) = 9,65T78BE-02 STARVATION PARAMETER = 1,00000E+01
VISCOCITY# (N#S/M#w2) = 7,87989E-02 ROI| ING SPEED EFFECT
PR-VIS COEFF* (Mew2/N) = 5,22136F=09 PARAMETERS ~ VR (M/S) = 2,28600E+01
TEMP-VIS COEFF®  (1/DEG-K) = 5,40451E-02 VN = =1,03200€-01
OQUTER RACE TEMP (DEG-K) = 3,30000f+02 JNNFR RACE TEMP  (DEG=K) = 3,30000E+02
3. TRACTION PARAMETERS OUT OF LUR MODEL BOUNDS =--
TRAC COEFF AT ZERO SLIP = 0, MAXTMUM TRAC COEFF = 2,00000€-02
TRAC COEFF AT INFINITE SLIP = 1.60000€E-02 SLIP 4T MAX TRAC (M/S) = 1,00000E400
4o LUBRICANT DRAG AND CHURNING PARAMETERS =---
EFF LUB VIS (N#S/M#e2) = 7,12066€-03 EFF LUA DEN (KGM/M%#3) = 1,00000E+0)
APPLIED LOADS AND SPEEDS
1o QUASI~STATIC SIMULATION ===
AXIAL LOAD (N) = 1,80000F«04 OUTER RACE ANG VFL (RPM) = O,
RADTAL LOAD (N} = 4,50000€403 TnunER RACE ANG VEL (RPM) = 2,00000E+04
RELATIVE MISALIGNMENT (NDEG) = 0.

2. DYNAMIC SIMULATION w=~
wunnnessunnnnse LOADS (N) eosnptannsnun nensenns MASS CEN ACC (M/Se82) wnnananp
1 11 1t i 11 i
OUTER RACE O 0. 0.
INNER RACE Oe 04 0.
annansenaean MOMENTS (N#*M) %onndsnenee s#hoannes ANG ACCELERATION (RPM/S) #wssnse
I 111 1 11 1it
OUTER RACE 0 0, 0.
INMER RACE 0. 0, 0.
wensewes ANGULAR VEILOCITIES (RPM)avsnnsne
1 181 128
QUTER RACE 0. 0o 0,
INNER RACE 2,00000E+04 0. 0,
COMPONENTS OF ACCELERATION DUE Tn GRAVITY VECTOR (M/S%%2) = 0. 0, 9.81000E¢00
EXTERNALLY APPLIED FORCE VECTOR aCTING ON CAGE (N) = 0. 0, 0.
CORRE SPONDING POSITION VECTOR IN INERTIAL FRAME (M) = 1436500€-02 0, 0,
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ELASTIC MODULUS
POISSON-S RATIO
MASS DENSITY

HASS

MOM OF INER =X
MOM OF INER =Y
MOM OF INER =2

BALL/RACE DAMP

BALL/CAGE DAMPING RAT
RACE/CAGE DAMPING RATIO

SCALE FACTORS,

INTEGRATION NETAILS AND

ROLLING ELEMENT

CAGE

{N/Ma82) 1.9994HF » 11 2.00000F+11
2.50000F-01 2.50000F =01
(KGM/M# 03} 7.75037€+03 7.75037F+03
ROLLING ELEMENT CaGF
(K6M) 2.80547F-02 4.70585F=01
(KGMaMue2} 1,01B11E=06 2,29196F~03
(KGMaM#a2) 1.01811E~06 1.17521F-03
(KGMepee2) 1.01811E~06 1.17521€~01
NG RAY}O = 0.
0o = [
= 0.

VUTPUT CONTRO(.S

LENGTH SCALE (M)
LOAD SCALE (N)
TIME SCALE (S}

DATA MONITOR CODE

INT METHOD CODE

STEP NO 1

9,52500£-03
1.80000E+04
1.21843E-04

ROLLING ELEMENT PARAMFTERS

anusannnvnoen CONTACT
(DE

OUTER RACE OUTER RACE

1.599E+01 o0,

1.434€.0) 0,

1,434E401 0,
#uennmnu® CONTACT HA
{
OUTER RACE INNER RACE
24880E-03  1.934E-03
24689E-03 1.719€-03
24689E~03 1,719E-03
#* ORB _POS wwus MASS
{DEG) {M/S)
AXTAL

04 0.

1.200E¢02 0,

24400E+02 O,
4* RE/CAGE ## RE/CAGE
MIN CLS SLIP VELS
(M) {M/S)
44050E~064  }.790E+01
Vo4T1E~D4  7,392E+01
1.,471E-04  7,392E401
hAd A RE/R?SE 1S0 FILM
OUTER RACE INNER RACE
14043E~06 9,395€-07
1.063E-06 9,597E~07
1.063E-06 9.597€E-07

ANGILES #stwbvanunttous
}

INNER RACE INNER RACE
2,527€+01 0,
2,640E40]1 =4.467E-07
2,640E+01  4.467E-03

LF  WIDTHS #tnnenntuun
M)

OUTER RACE INNFR RACF
3.815E-04 3,2R1E-04
3.564E-04 2,919E-04
3.564E-04 2.919E-04

CENTER VELOCITIES %eww
(M/S) {RPM)

RADTAL oRBITAL
0, 8.804E+03
0, 8,859€403
0, 8.859E+03

MIN STEP SI7F = 2,00000E
MAX STEP SIZE = 1,00000E
FINAL TIME = 4,00000E
PRINT CODES = 550 S
SOLUTION MODE = 13

#a& CONTACT LLOANS wneew
(N)

OUTER RACE INNFR RACE
4.420E403 2,852F+03
3.599E+01 2,005F¢03
3.599E+03 2,005€+03

LOADSSLIP INTEGRALS #
(N#M/S)
OUTER RACF TnMER RACE

2.099E+03
1.496E+03
1.496E¢03

4,124F+03
3,055F+03
3.,055E+03

“woend ANGULAR VELOCITIES #uswew wuwews RE/CAGE CON FORCES #
(RPM) {N) (N}

X CompP Y COMP
“7.143E404 0,
~7.232E+046 0,
=7.232E+04 0,

vunusnsen RE/RACE SLIP VELOCITIFS aususanns
(M/5)

OUTER RACF OUTER RACE
1 I

-3.523t-01
~3.087E-01
~3.0A7E-01

0,

0,
«3,439E-14

THERMAL #STDE LFAK
FA

cT
OUTER RACE INNER RACE

AGE
0RS

3.7A3E-01
3.AR6E-0]
3.RR6E-01

3.798E-01
3.818€-01
3.818E-01

INNER RACE

INNER RACE
1 11

0. 0,
~1.407€-03 -5,555¢F~13

1.407€~03 o,
DRAG FORCE CHURN MOM
(N} (NeM)
2.731E+00 2,A80€-03
2.766E+00 2.907E-03
2.766E400 2,907€-03
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RACEWAYS

1,99948k 11}

SHAF T

1.99948E+)]

HOUSTNG

1.99948E+11

2,50000E-01 €.50000E-01 2,50000E-01
7.75037E+03 7.75037E+03 7.75037€+03
OUTER RACE INNER RACE
2+32900E+00 1.62894E+00
1.59413E-02 5,50250£-03
8,25241E-03 2.94830E-03
8,25241E-03 2.94830E=-03

~02 INITIAL STEP SIZE = 1,00000E-01

+01 TRUNCATION LIMIT = 1,00000E-04

+02 STEP OPT CODES = 650 2
AUTO PLOT CODES = 119 21

100MM ENGINE BRG MOD CAGE

sen CONTACT DEFLS www

M)
INNER RACE

OUTER RACE

2.350E-05 2,098F-05
2,049€-05 1.658E-05
2.049E-05 1,658E-05

TRAC*SLIP INTEGRALS #

(N®M/S)

OUTER RACE INNER RACE
3.039E401  T,434E401
1.692E+01 5.,088g+0]
1.692E¢01 5,088E401

7 CompP NORMAL
1,794E+04  2,149F-02
1,622E+404 1,276E+00
1,622E+04  1.276E+00

#% CONTACT STRESSES @
(N/Mua2)
OUTER RACE INNER RACE
1.921€+09
1,793E¢09
1.793E+09

2.167F 09
1.908€+09
1.908E+09

* SPIN/ROLL RATIOS #e

OUTER RACE INNER RACE
=3,606E-)5 2,311F~01
6,642E-16 2,754€~01
1.,727€-15  2,754E-01
wanaw

{DEG)

TRACTION CON ANGLE
2.617€-02 2,700F+02
2,217E-01  1,791F+02
2,217E-01 B.611€~01

e#nsru® RE/RACE TRACTION COEFFICIENTS wuwnw

OUTER RACE OUTER RACE
T 11

-2,000g~02
=2,000-02
~2,000F-02

0.

0.
~2.,22RE~-15

NET DRAG+
CHURN LOSS
(N®M/S)

1.986E€402
2,023E+02
2.023E+02

INNER RACE INNER RACE
1 1

0. 0.
~1.405E=13 =1,405E-13

0. .

18/4,5KN 20KRPM



STEP NO 1

RACE AND CAGE PARAMFTERS

#nsw MASS CENTER POSITIONS #se#® exaw MASS CEMTFR VELOCITIES wwet

M) (M) (DEG) (M/S)
AXTAL RADTAL ORATTAL AXTAL
CAGE -S.,760E-05 3.070E-04 O, 0.
OUTER RACE 0. 0, 0, 0.
INNER RACE ~3,747E-05 7,039€-06 0. 0.
“senan ANGULAR VELOCITVIES
(RPM)
X CoMP Y CoMP z cnMP X COMP
CAGE 8.841E+03 0, 0. 3,288€-03
OUTER RACE 0. 0. 0, 1.800E+04
INNER RACE 2,000E+04 O, 0. ~1,800£404
snnsunsssnes RACE/CAGE FORCES watnesssnsannne
(N) (N) (DFG) {DEG)
NORMAL  TRACTION CON ANGLE ATT ANGLE
LAND NO | 8.395E=02 1.753E+00 1,800€+02 ~-5,230E+01
LAND NO 2 B.39SE=02 1,753E400 1.800£+02 -5.230E+01
CAGE CHURN MOM IN®M) = T7.962€-02

APPLIED PARAMETERS

aunpnuntnane FORCES wnanunnmpund

{H/S) (RPM}
RADIAL GRATITAL
0.

0.

0,

wnunt® wanovows NET ACC FORCES ®wananse

")

Y COMP Z conpP
=2,4TRF+00 ~9.451E+00
~1,932F+01 6.364E+03
«3,A20E+00 =4.498E+03

RACE/CAGE RACE/CAGE
MIN CLS SLIP VELS
™M (M/S)
2.781F=04  T.459E+01
2,7816=04  7.459€+01

CAGE NET CHURN LOSS

Sananusunees MOMENTS SWesssnanes

(N) (N#M)
X COMP Y CoMP 2 coMP X COMP Y COMP 1 coMP
OUTER RACE ~}.B00E+04 1,932E+01 -4,364E+03 1,462E40) -1.112F¢02 2.829F-02
INNER RACE 1.800E+04 3,B20E400 4,498E+403 -3,1086-01 1,332F+02 1.170E-0)
we MASS CENTER ACCELERATIONS ##% www# ANGUI AR _ACCFIERATIONS sesnes
(M/E--zf EL ToN Tibhigs) <!
X compP Y COMP Z coMP X COMP Y COMP Z coMP
OUTER RACE 0. 0. 0, 0. 0 0,
INNER RACE 0. 0. 0. 0. 0 0.
NET BRG LOSS (N#M/S) = 6,182F+03 NET LOAD®S| 1P
CURRENT LIFE (HOURS) = 1,536F+04 OUTER RACE FIT
INTERNAL CLEARANCE (M) =  1,062FE-04 INNER RACE FIT
0.R, HOOP (N/MR82) = =],427E407 1.R. HOOP
CAGE HOOP (N/M#82) = 3,511E+07
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S 100MM ENGINE BRG MOD CAGE

#esne ANGULAR POSITIONS swswess

(DEG}
x COmp Y COMP Z compP
0. 0, 0.
0. ' 0.
0, 0, 0.

wewnne®d NET ACC MOMENTS wawnvne
(Nom)

X COmp Y COMP Z comp
1,161E-01 2,544E=02 2.983E-02
~1.,462E+01 1,312F02 -2,829E-02
3,108E-01 =1,332€+02 ~1,170E-01
EFFECTIVE
O1A PLAY
M)
1.156E-03
1,156E~03
{N*M/S) = 6,153€+02
(N#M/S) = 9.324E 404
(M) = 1.000E-05
M) = 9.T67E-07
(N/M#s2) = 1,183E+08
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DIMENSIONLESS RADIAL ACCELERATION, R x 108
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Fig. 1 Characteristic Ball Mass Center Vibration Pattern
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DIMENSIONLESS TIME, T

in an Angular Contact Ball Bearing
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Fig. 2 Typical Ball/Cage Contact Vibration
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Ball Cage Force (N)
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4 Peaks !dentified by
Rolling Element #
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Inner Race Angular Position (Deg.) 638

Fig. 3 Typical Ball/Cage Collisions in a Angular Contact Ball Bearing
with Combined Axial and Radial Load

Fig. &4

Simple Spring and Damper Model for any
Contact Interface
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Fig. 6 Variations in Ball/Race Load, Contact Angle
and Spin-to-Roll for the 100 mm Engine Bearing

JOYNAMICS OF ROLLING ELEMENT BERRINGS
A REAL TIME SIMULATION OF BEARING PERFORMANCE
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Fig. 7 Dimensionless Ball Angular Velocity Variation for the
100 mm Engine Bearing. Scale = 7.84 x 10% rpm
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Fig. 8 Ball/Cage Interaction for the 100 mm Engine Bearing
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Fig. 9 Repeated Cage/Race Collisions in the 100 mm Engine Bearing
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DYNAMICS OF ROLLING ELEMENT BEARINGS
A REAL TIME STMULATION OF BEARING PERFORMANCE

100MM ENGINE BRG MOD CAGE 18/4.5KN 20KRPM
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Fig. 10 Steady Orbit of the Cage Mass Center for the 100 mm
Engine Bearing. Scale = 0.009525 M
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Fig. 11 Dimensionless Velocity of Cage Mass Center for the
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7.84 x 10% rpm
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