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Vibrational Characteristics of Ball
Bearings

The classical differential equations of motion of the ball mass center in an angular contact
thrust loaded ball bearing are integrated with prescribed initial conditions in order to
simulate the natural high frequency vibrational characteristics of the general motion.
Two distinct frequencies are identified in the analytical simulation and their existence
is also confirmed experimentally. One of the frequencies is found to be associated with the
Hertzian contact spring at the ball race contact and it is therefore defined as the “elastic
contact frequency,” Q.. The other dominant frequency corresponding to oscillatory mo-
tion of the ball in the raceway groove appears to be kinematic in nature and it is, there-
fore, termed as the “bearing kinematic frequency,” Q. It is shown that for a given bearing
Q. and Q vary as, respectively, I and 1 powers of the ball contact load and, therefore,
for a given load these frequencies correspond to the natural frequencies of the bearing as

applied in any vibrational analysis or simulation.

Introduction

Primarily due to the ease in the measurement of high frequency
vibrations generated within a rolling-element bearing a strong interest
has been recently generated in correlating bearing performance to the
frequency contents of a signal picked up by a accelerometer mounted
on the stationary race. To a substantial degree of success such tech-
niques have been used in detecting defects and diagnosing failures
in bearings [1-4].! The procedure generally consists of obtaining the
characteristics of an undamaged bearing and comparing these char-
acteristics with those of a possibly damaged bearing. The low fre-
quency vibrations generated by certain bearing defects have been
found to modulate the amplitudes of some characteristic natural
frequencies of the bearing and when these natural frequencies are
known a proper demodulation of the signal provides substantial in-
sight into the bearing behavior. Thus characterization of the bearing
natural frequencies has become an important task in this new de-
veloping area in rolling bearing technology.

! Numbers in brackets designate References at end of paper.
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The complexities associated with various types of interaction be-
tween rolling elements, races and cage have greatly restricted the
investigations of real time dynamic simulation of the rolling element
motion. Recently, Gupta [5] formulated the generalized ball motion
in terms of the classical differential equations of motion allowing the
ball mass center to translate arbitrarily in space along with generalized
rotations about the mass center. Such a formulation has resulted in
a complete simulation of ball motion which is needed for the deter-
mination of any characteristic vibration frequencies associated with
the bearing.

One of the primary objectives of this paper is to investigate the high
frequency motion as simulated by the dynamic formulation due to
Gupta [5] and correlate the natural frequencies with the bearing pa-
rameters. An experimental verification of the analytically predicted
frequencies is also undertaken.

Analytical Simulations
As shown in Fig. 1, the general motion of the ball mass center can
be expressed in cylindrical coordinates by the following differential
equations of motion
mx = F,
mF — mrf2 = F,
mré + 2mrd = Fy (1)

where m is the mass of the ball.
The applied force components F,, F,, and Fg are determined by the
ball race contacts loads and tractions. In simulating any contact vi-
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brations between the ball and races the orbital motion can be disre-
garded and only x and r components will be relevant. Also, since the
contributions due to tractive forces are primarily along the 6 direction
and those along x- or r-directions are negligible compared to the
normal contact loads, the tractive forces will not have any significant
effect on the ball accelerations along the x - and r-directions.

In terms of the nondimensional variables defined earlier by Gupta
[5], the equations of motion along the x- and r-directions are written
as

X _ L,
dr?
d2R do\2
~-(R+R —) =F* 2
2~ FrRe (3) @

where X = x/ro; R = r — re/ro; Re = refro; 7 =t VQo/mro; Fx* =
F,/Qo; F,* = F,/Qoand ro, r. and Qo are, respectively, the ball radius,
pitch radius and static contact load at the ball race contact.

For any specified position vector, locating the ball mass center
relative to the races, the normal contact loads, and, therefore, F* and
F,*, are computed using the classical Hertz contact theory. In case
of static equilibrium clearly the accelerations will be zero, but if the
bearing is disturbed from the equilibrium position, the ball mass
center will move according to equation (2). If any natural frequencies
are associated with such a motion, then they should be clearly evident
by a somewhat more detailed form of equation (2). Unfortunately,
the expressions for the contact forces are greatly complicated by the
geometry of the bearing and relevant kinematic features determining
the ball race contact mechanics in an angular contact ball bearing.
However, an analysis in which the inner race is held in static equi-
librium with the applied thrust load and the outer race is fixed in space
has been presented by Gupta [5] and a computerized simulation
corresponding to the analytical formulation is also readily available.
In the present investigation, therefore, this computerized simulation
is used to solve equation (2) numerically when the initial conditions
are set close to the equilibrium conditions and contacts are basically
assumed frictionless while the initial angular velocities are determined
simply by kinematics when the race speed is prescribed. The partic-
ular bearing used in the present investigation is selected from the
experimental work carried out earlier by Winn [3]. This bearing will
be denoted as Bearing A in the present investigations and the relevant
bearing data is

Ball diameter = 12.7 mm (0.50 in.)
Pitch diameter =70 mm (2.7557 in.)
Contact angle = 30°

Quter race curvature factor = 0.52

Inner race curvature factor = 0.515

Number of balls =14

When a thrust load of 2224 N (500 Ib) is applied and the inner race
is subjected to an angular velocity of 1000 rpm, while the outer race
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is held stationary, the axial and radial acceleration components, as
given by equation (2), obtained by the computerized simulation of
Gupta [5] are shown in Fig. 2. Fig. 2 shows the corresponding com-
ponents of the position vector locating the ball mass center. It is clearly
seen that the accelerations have two distinct frequencies. Further-
more, the X and R components of acceleration corresponding to the
high frequency are in phase while the low frequency contributions are
180 deg out of phase. It is true that under ideal conditions this vi-
bratory motion may be damped out due to friction but in practical
applications, where the bearing is constantly subjected to subtle
disturbances this type of high frequency motion has been found to
exist under steady-state conditions. A detailed understanding of this
motion, therefore, has a substantial practical relevance.

In the mode when the ball indents the race it is clear that both X
and R components must be in phase. Normal contact vibration over
the Hertzian spring, as will be discussed in somewhat more detail later,
is, therefore, expected to result in the high frequency motion shown
in Fig. 3. The mechanism for the lower frequency is not clear in a
straightforward fashion. However, if the X and R components are
180° out of phase then the variations in contact angles at the outer
and inner race contacts should be 180 deg out of phase. Furthermore,
since the bearing has a pure thrust load and the inner race is held in
static equilibrium, the contact loads should vary such that equilibrium
of the inner race is satisfied with the varying contact angles. All such
variations of contact angles and loads are shown in Fig. 3. It is also seen
that only the contact load at the outer race contact has the high fre-
quency content. This is primarily due to the assumption that the inner
race is always held in static equilibrium. Thus the contact spring at
the inner race contact basically applies a static force which is in
equilibrium with the applied thrust load.

The existence of these two distinct frequencies of the natural mo-
tion has also been found experimentally. However, before discussing
the available data a correlation of these frequencies with some bearing
parameters will be helpful for engineering purposes.

Natural Frequencies of Ball Motion

From the general characteristics of the ball motion discussed above
the two natural frequencies may be correlated, respectively, with the
Hertzian elastic spring and the rigid body type oscillatory motion of
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Fig. 2 Typlcal axial and radial components of acceleration
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Fig. 3 Variations of computed elastic contact freq Y, we and bearing
kinematic frequency, w, as a function of ball-race contact load

the ball. Strictly for the purpose of nomenclature these frequencies
are, therefore, called “elastic contact frequency,” ©, and “bearing
kinematic frequency,” Q.

(1) Elastic Contact Frequency, Q.. The load deflection rela-
tionship for elastic point contact between two interacting bodies is
given by the classical Hertzian theory as

Q=Co3/2 (3)
where Q is the load, ¢ is the deflection and C is a constant dependent
on elastic properties and geometry of the bodies.

When the vibratory motions of the ball is such that the variation
in the contact deflection is small compared to a nominal deflection,
then equation (3) can be differentiated to obtain an equivalent stiff-
ness,

a 3 3
;Q.=_C(31/2=_QQ_ (4)
a6 2 26

The natural frequency of ball motion corresponding to the above
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Fig. 4 Variations of computed elastic contact freq y, we and bearing
kinetic frequency, w, as a function of ball-race contact load
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stiffness is thus

3Q »)

1
Qe = —_—
27 2m

=

where m is the ball mass.

In the analytical simulations presented earlier, {2, will be relevant
only for the outer race contact, since the inner race contact spring just
provides a static force. This means that the inner race is considered
to be massless. In practical systems where the inner race may not move
instantly to satisfy equilibrium, a spring similar to the outer race
contact will also exist at the inner race contact. Clearly, these two
springs will be in parallel and if subscripts 1 and 2 are used, respec-
tively, for the outer and inner race contacts then the expression for
Q. may be written as:

Q,_,=L\/-—3-—<9—1+&> ©6)
2r 2m 51 52

By combining equations (3) and (5) it will be clear that Q, varies
as % power and load. The high frequency present in the ball motion
correlates extremely well with Q.. From the analytical simulation the
estimated high frequency w, is plotted in Fig. 4 as a function of ball
load Q and the ¥ power variation is clearly seen. It is also found that
w, agrees closely with Q, to about 2 percent.

It may be noted from Fig. 4 that at large contact loads or at very
high speeds, 2. and Q, will be comparable with each other and a clear
distinction between these two frequencies, as seen in Fig. 3, may not
be seen. Although the analysis presented by Gupta [5] is valid for any
loads and speeds, when the inner race is assumed to be massless, the
simple correlations presented above are only relevant to low speed
conditions, when the contact angles at the inner and outer raceways
are closely identical. The primary reason for this restriction in the
present investigation is simply the nonavailability of high frequency
ball motion data in very high speed bearings. It is expected that as
more experimental data becomes available the additional capabilities
of the computerized simulations may be used to investigate the pos-
sible correlations at high speeds.

(2) Bearing Kinematic Frequency €. A physical mechanism for
the observed low frequency is not very clear at this stage but exam-
ining the X and R components somewhat closely, it seems evident that
the motion is kinematic in nature. If it is assumed that the lower fre-
quency response is indeed a sinusoidal motion with a fixed frequency
then any such frequency should be related to the classical expression

of the type:
1 g
0Ly :
27 1 @

where g is the relevant acceleration and [ is the length of the oscillating
pendulum.

Since the inner race is in static equilibrium with the applied thrust
load, the axial component of the ball-race contact load may be as-
sumed to provide an equivalent acceleration and since for low speed
bearing the contact forces at the inner and outer races are equal the
effective acceleration corresponding to oscillation of either raceway
will be equal. However, the determination of the effective length is
not quite straightforward. It can be assumed that the ball rolls on just
one of the races and if it has to oscillate on both of the races then
clearly the actual path of the ball is no longer circular. An additional
complication is introduced by the fact that the inner race is moving
axially in order to preserve the axial equilibrium. In the light of all
these difficulties the effective length, [ is strictly determined by ex-
amining the actual response and by assuming that the low frequency
motion is indeed sinusoidal. The relevant kinematic frequency is thus
defined as

Q=—YV = ®

where @ is the contact load and the effective length is determined
numerically from the analytical simulation of the ball load.
The overall validity of equation (8) does not seem unreasonable

Transactions of the ASME



| L S B B S A
ANALYTICAL PREDICTIONS | |
we = 25.03 kHz

wy = 2.81 kHz

b
(5]

)

nN
o

ACCELERATION - g's PEAK

\J ..J v \ /M\v

6] 8 16 24 32 a0 48 56 64 72 80
FREQUENCY (kHz)

Fig. 5 Experimental frequency spectrum and comparison with analytical
predictions for Bearing A

when the simulated frequency, wx is plotted as a function of load, @
in Fig. 4 as a 1 power variation is clearly noted. The value of [ for the
results shown in Fig. 4 is estimated to be 0.115 mm (4.53 X 1073
in.).

Once again, since the available experimental data isina relatively
low speed region, the above correlations are intended only for low
speed conditions.

Experimental Verification

In order to experimentally verify the existence of the above char-
acteristic natural frequencies the analytical predictions are compared
with the available experimental data for two different bearings. The
data for one of the bearings, Bearing A used by Winn [3], is already
given above. The second bearing is selected from the work of Bro-
derick, et al. [1] and Meacher and Chen [2]. This bearing is denoted
as Bearing B and the relevant bearing data is:

=17.9375 mm (0.3125in.)
Pitch diameter = 48.514 mm (1.9010 in.)
Contact angle =15°

Quter race curvature factor = 0.53

Inner race curvature factor = 0.515

Number of balls =15

Ball diameter

The experimental data for both of these bearings is obtained by
carrying out a conventional spectral analysis of a vibrational signal
collected by an accelerometer mounted on the stationary outer race,
when the inner race is subjected to a constant angular velocity of 8000
rpm under a prescribed thrust load of 4448 N (1000 1b). The details
of the experimental set-up and associated electronics are closely
identical to those of many similar investigations available in the lit-
erature and a reference to the work of Darlow and Badgley [4] will
suffice for the salient features of the experimental apparatus.

Typical spectograms for Bearings A and B are shown in Figs. 5 and
6, respectively. The analytically simulated elastic contact and bearing
kinematic frequencies are also stated on the spectograms. It is clear
that the elastic contact frequency is the most dominant peak in the
frequency spectrum and the existence of a peak corresponding to the
kinematic frequency is also verified. Some of the other dominant
frequencies present in the spectrum cannot be predicted by the sim-
plified analytical simulation used in the present investigation.

There are additional factors which complicate the problem. Firstly,
in a real system there is some mass associated with the moving race
and this mass adds another degree-of-freedom in the vibratory mo-
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Fig. 6 Experimental frequency spectrum and comparison with analytical
predictions for Bearing B i

tion. Secondly, the assumption that the low frequency motion is truly
sinusoidal may not be realistic and, therefore, a Fourier decomposition
of the true signal may result in more than one characteristic frequency.
With all these uncertainties involved, the work presented here should
be regarded only as a preliminary study at this stage. Perhaps, some
more advanced.computerized simulations, which the authors hope
to provide in the near future, will reveal the additional greatly needed
insight into the natural frequencies of a rolling bearing.

Conclusion

Pertinent to the vibratory motions in rolling bearings two charac-
teristic natural frequencies have been defined and their existence is
verified by both computerized analytical simulation and the available
experimental data. An “elastic contact frequency,” Q,, is correlated
to a Hertzian spring relevant to the ball race contact. Although the
physical model for the lower frequency component is not absolutely
clear the motion is found to be basically kinematic in nature, and it
is, therefore, termed as “bearing kinematic frequency,” . Primarily
based on the physical properties associated with these two distinct
modes, it is shown that Q. and Qy vary as respectively % and % powers
of the ball-race contact loads. The entire investigation is restricted
to only low speed bearings and the contact loads at the outer and inner
race contacts are therefore closely identical. The existence of these
two characteristic frequencies in the general ball motion in a bearing
is also supported by the available experimental data.
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DISCUSSION,

J. L. Frarey?

I am very pleased to see analytical work being conducted in the area
of high frequency vibration of ball bearings. Many investigators are
successfully using this region of the bearing vibration spectrum to
diagnose the condition of a ball bearing. A better understanding of
the generation of high frequency vibration in ball bearings will aid
all of us in the field.

1 would however like to see new experimental work done in verifying
the presence of the predicted vibration components. I do not have
access to reference [3] of the paper, but have examined reference [1}

2 Shaker Research Corp., Ballston Lake, N.Y.

which contains the data used for Fig. 6 of the paper. The experimental
frequency spectrum is shown in Fig. F-1 of reference [1]. From this
figure and the calculation of the paper, it would seem that the ana-
lytical/experimental agreement is excellent. If, however, one examines
Fig. F-2 of reference [1], which is a vibration spectrum of the same
bearing at 5 percent of the load, one would expect to see the signals
at 55 KHz and 8 KHz to be reduced in frequency by the amount
predicted in Fig. 4 of the paper. Fig. F-2 of reference [1], however,
shows that the two signals have not shifted in frequency at all and
remain at approximately 8 KHz and 55 KHz. It would seem therefore
that these two signals are fixed resonances and not the Elastic Contact
Frequency and the Bearing Kinematic Frequency signals as suggested
in the paper.

Great care must be exercised in the high frequency region to elim-
inate transducer resonances. The signal at 55 KHz is particularly
suspect in this regard. Its amplitude is almost directly proportional
to bearing load which might be expected for an accelerometer reso-
nance.
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0. G. Gustafsson®

The authors present very interesting results from their simulation
technique to determine two heretofore unknown natural frequencies
of ball bearings.

In their analysis, the authors study the vibration of the ball com-
plement only and neglect the influence of the outer ring mass, while
in the experiments the outer ring vibration was measured. This is
understandable since including the effect of the outer ring mass and
flexibility would make the analysis even more complex. The discus-
gant feels that, at least in their first approach, the authors are justified
in neglecting the effects of the outer ring and in using a frictionless
model, since the two natural frequencies have been clearly identified
under steady-state conditions in experimental vibration spectra.

In the discussant’s laboratory, a series of outer ring resonances,
different from those mentioned by the authors, were studied, con-
sidering the effects of outer ring mass and flexibility in its own plane.*
The effect of ball mass was, however, neglected. The ball contacts were
assumed to act as linear springs. The natural frequencies of the free
outer ring (not mounted in a housing) are given by the equation

B ki
R3 2
27| wpoAR(1 + 1/n?)

(n2-1)2

ﬂ1=

Zz2n+1

where
f = natural frequency in Hz
E = Young’s modulus of elasticity
I = second moment of area of the ring cross-section
R = mean radius of the ring
kn = linearized Hertzian coefficient
po = mass density of ring
A = cross-section area of ring
Z = number of balls
n = any integer > 0

The six lowest natural frequencies were computed for the authors’
bearing A under the assumption that the ring and ball dimensions are
the same as those of a 6210 bearing. These frequencies are 370, 472,
520, 607, 744, and 947 Hz. The lowest frequency, 370 Hz, represents
rigid body motion of the outer ring, while the higher frequencies in-
clude the effects of outer ring bending. It is seen that in this case, all
the computed resonant frequencies are too low to be observed in the

3 SKF Industries, Inc., King of Prussia, Pa.

4 Gustafsson, O. G., Tallian, T. E., et al., “Final Report on the Study of the
Vibration Characteristics of Bearings,” U. S. Department of the Navy, Bureau
of Ships, Contract NOb-78552, SKF Report AL63L023, DDC AD 432 979,
1963.
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Fig. 7 Vibration spectrum of 6312 bearing from 1000 to 5000 Hz

authors’ spectrum. Higher flexural natural frequencies also occur
throughout the spectrum, but the amplitudes at these frequencies are
generally too small to be detected. The outer ring resonances are
highly influenced by the bearing dimensions. For a 6312 bearing, the
computed three lowest natural frequencies are 2.49, 3.51, and 5.37
kHz. Fig. 7 shows an experimental spectrum of a 6312 bearing, which
indicates fairly good agreement with the three computed frequen-
cies.

Authors’ Closure

The authors agree with Mr. Frarey in the fact that more experi-
mental data is needed in order to understand the dynamic charac-
teristics of rolling bearings. It is true that a number of frequencies,
other than the two defined by the authors, are present in any exper-
imental spectrum. The precise load dependence of the various
frequencies is also not known and the authors agree that some of the
frequencies could indeed be independent of load or other operating
conditions. In view of all these uncertainties the objective of this paper
is only to show that the computed characteristic frequencies do indeed
exist in experimental frequency spectra discussed in this paper.

At a light load of 50 b, in the case of Bearing B, the computed
elastic contact and kinematic frequencies will respectively reduce to
about 32.2 kHz and 1.80 kHz. The existence of these frequencies in
the spectrum shown in Fig. F-2, by Mr. Frarey, cannot be completely
denied. The fact that relatively small peaks continue to exist at about
8 kHz and 55 kHz, once again suggests a more extensive analytical and
experimental investigation aimed at a systematic characterization
of all dominant frequencies. The authors agree that it is important
to eliminate transducer and other resonances associated with the
experimental apparatus.

Bending of the outer race will certainly contribute to several
characteristic peaks in the very low frequency region as pointed out
by Mr. Gustafsson. The authors look forward to a more complete
dynamic simulation which to some extent will allow for the flexibility
of the races.
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